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ABSTRACT
Most causal inference methods consider counterfactual variables under interventions that set the exposure
to a fixed value. With continuous or multi-valued treatments or exposures, such counterfactuals may be of
little practical interest because no feasible intervention can be implemented that would bring them about.
Longitudinal modified treatment policies (LMTPs) are a recently developed nonparametric alternative that
yield effects of immediate practical relevance with an interpretation in terms of meaningful interventions
such as reducing or increasing the exposure by a given amount. LMTPs also have the advantage that they
can be designed to satisfy the positivity assumption required for causal inference. We present a novel
sequential regression formula that identifies the LMTP causal effect, study properties of the LMTP statistical
estimand such as the efficient influence function and the efficiency bound, and propose four different
estimators. Two of our estimators are efficient, and one is sequentially doubly robust in the sense that it
is consistent if, for each time point, either an outcome regression or a treatment mechanism is consistently
estimated. We perform numerical studies of the estimators, and present the results of our motivating study
on hypoxemia and mortality in intubated Intensive Care Unit (ICU) patients. Software implementing our
methods is provided in the form of the open source R package lmtp freely available on GitHub (https://
github.com/nt-williams/lmtp) and CRAN.
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1. Introduction
Most modern causal inference methods use a potential out-
come framework to define causal effects as contrasts between
the outcome distribution under different hypothetical coun-
terfactual worlds. The defining characteristic of these coun-
terfactual worlds is a series of interventions on the cause
being evaluated. For example, causal effects for binary variables
can be defined as the difference in mean outcome compar-
ing a world where everyone receives an intervention versus a
world where everyone receives a control—the so-called average
treatment effect. For multi-valued exposures, most methods
study the outcome expectation under a series of hypotheti-
cal worlds corresponding to assigning the same value of the
exposure to all units in the population—the so-called dose–
response curve. While informative, a dose–response analysis
presents some challenges. First, for some exposures (e.g., phys-
ical activity) it is hard to conceive an intervention that would
set them statically (e.g., make everyone exercise 30 min), even
in principle. This presents a problem for dose–response effects
because one cannot reasonably implement an intervention that
would bring about such effects in the real world. Second, sum-
marizing the infinite-dimensional dose–response curve often
requires restrictive and arbitrary parametric assumptions. These
assumptions, frequently encoded in marginal structural models,
are typically wrong, and the models can be hard to interpret
under model misspecification (Neugebauer and van der Laan
2007). Third, nonparametric approaches to estimation of the
causal dose–response curve cannot achieve n1/2-consistency,
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because the parameter is not pathwise differentiable. For exam-
ple, the estimators of Kennedy et al. (2017) converged at the
(nh)1/2-rate (where h is a bandwidth that decreases with sample
size, giving the familiar n−2/5 rate under twice-differentiability).
Fourth, the effects are not identified when some units have
a zero chance to receive some of the exposure levels under
consideration, a situation known as violations to the posi-
tivity assumption. Positivity violations are likely present with
most continuous and multi-valued exposures, and are exac-
erbated when the exposures are measured at multiple time
points.

As a solution to the above limitations, the causal infer-
ence literature has considered alternative definitions of causal
effects, allowing for hypothetical worlds where the exposures
can depend on characteristics of the unit (dynamic regimes),
where the post-intervention distribution is a random draw from
a given but possibly unknown distribution (stochastic inter-
ventions), and where the post-intervention exposure may be
a random or deterministic function of the observed treatment
value (e.g., Stock 1989; Robins, Hernán, and Siebert 2004). In
this article, we adopt the latter approach. In this context, we
have previously studied interventions that shift the exposure
distribution (Díaz and van der Laan 2012) for single time point
studies. Haneuse and Rotnitzky (2013) generalized our pre-
vious interventions and introduced the name modified treat-
ment policy (MTP), which we adopt in this article. MTPs can
yield estimates with a familiar interpretation as the expected
change in mean response for a given change in the exposure

© 2021 American Statistical Association
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of interest—without the need to impose unrealistic paramet-
ric assumptions such as linearity in the causal model. In our
motivating example, we estimate the effect on 14-day survival
of an increase of 50 units in the arterial partial pressure of
oxygen to fraction of inspired oxygen (P/F) ratio, where the only
patients with respiratory failure (P/F ratio < 300) receive the
intervention.

For the longitudinal case, Robins, Hernán, and Siebert (2004)
introduced dynamic regimes depending on the natural value of
treatment, where the natural value of treatment is the value
that treatment would take at time t if the intervention was
discontinued right before time t. Richardson and Robins (2013)
and Young, Hernán, and Robins (2014) formalized the effect
definition and showed conditions under which the effects are
identified by the extended g-formula of Robins, Hernán, and
Siebert (2004). A key finding of these articles is that the sequen-
tial randomization assumption required for identifying effects
that depend on the natural value of treatment is stronger than
that required for identification of the effect of dynamic regimes.
Although Richardson and Robins (2013) and Young, Hernán,
and Robins (2014) used the same name dynamic regimes depend-
ing on the natural value of treatment to refer to the interventions,
the definitions given in the papers are different. In this article we
use the name longitudinal modified treatment policies (LMTP)
to refer to the definition of Richardson and Robins (2013), as
the interventions in this work are a natural extension of the
definition of Haneuse and Rotnitzky (2013) for single time point
studies.

We present a novel alternative expression of the extended
g-formula in terms of sequential regressions. We show con-
ditions under which the sequential regression formula allows
the generalization of estimators for dynamic regimes to the
case of LMTPs. We also introduce a stochastic intervention
where instead of setting the exposure equal to the LMTP, we
set it to a random draw from the LMTP distribution. We
call this intervention LMTP stochastic intervention (LMTP-SI).
Young, Hernán, and Robins (2014) showed that the sequen-
tial randomization assumption required for identification of
LMTP-SI is identical to that required for identification of
the effect of dynamic interventions. Thus, the LMTP func-
tional can still be interpreted as a causal effect even under
the standard identifiability assumptions required for dynamic
regimes.

We propose four different estimators for the LMTP sequen-
tial regression functional. The first estimator is a simple exten-
sion of the inverse parametric probability weighted (IPW)
of Young, Hernán, and Robins (2014); the second is a sim-
ple extension of the g-computation estimator presented by
Robins, Hernán, and Siebert (2004) and Taubman et al. (2009).
IPW and g-computation estimation require estimating nui-
sance parameters related to the conditional density of treatment
and outcome regressions conditional on the history of a unit.
When these nuisance parameters are estimated within pre-
specified parametric models, the LMTP estimators are asymp-
totically Gaussian and the Delta method or the bootstrap
are guaranteed to yield valid asymptotic p-values and confi-
dence intervals. However, whenever the nuisance estimators are

data-adaptive, such as when model selection is performed, the
asymptotic distribution of the IPW and g-computation esti-
mators is generally unknown, making it difficult to perform
hypothesis tests and quantify the uncertainty around the esti-
mate. We thus develop two additional estimators that overcome
this issue.

Our third and fourth estimation strategies have roots in
semi-parametric estimation theory (e.g., von Mises 1947; Bickel
et al. 1997; van der Vaart 1998; Robins et al. 2009), in the
theory for doubly robust estimation using estimating equations
(Robins, Rotnitzky, and Zhao 1994; Robins 2000; van der Laan
and Robins 2003; Bang and Robins 2005), and in the targeted
learning framework (van der Laan and Rubin 2006; van der Laan
and Rose 2011, 2018). Central to this theory is the study of the
efficient influence function (EIF) or canonical gradient, which
characterizes the efficiency bound of the LMTP functional and
allows the development of estimators under slow convergence
rates for the nuisance parameters involved (Robins et al. 2009).
We derive the EIF for LMTPs under the assumption that the
LMTP does not depend on the data-generating mechanism. We
show that this EIF has a similar structure to the EIF for dynamic
interventions under a differentiability and invertibility condi-
tion on the LMTP. We then show that, under these conditions,
the EIF allows for multiply robust estimation. This is a surpris-
ing fact that should not be expected for general interventions
that depend on the natural value of treatment, since the param-
eter functional depends on both the outcome regression and the
exposure mechanism. We exploit the similarity of the EIF to
generalize some estimators for dynamic intervention available
in the literature. In particular, we develop a targeted minimum
loss-based estimator (TMLE), which is a natural extension of
the estimator of van der Laan and Gruber (2012). We show
that the TMLE is multiply robust consistent in the sense that
it allows for consistent estimation under τ + 1 configurations
of consistent estimation of the nuisance parameters, where τ

is the number of time points under consideration. We then
develop a sequentially doubly robust (SDR) estimator based on
multiply robust unbiased transformations by generalizing the
estimators of Luedtke et al. (2017) and Rotnitzky, Robins, and
Babino (2017), which are themselves related to ideas dating
back to Rubin and van der Laan (2007) and Tchetgen Tchetgen
(2009). Luedtke et al. (2017) referred to this estimator as SDR via
doubly robust transformations; we adopt this name and shorten
it to SDR for simplicity. The SDR estimator is expected to be
consistent under 2τ configurations of consistent estimation of
the nuisance parameters. This is in complete analogy to the
(τ + 1)- and 2τ -multiply robust consistency results discussed
by Luedtke et al. (2017), Rotnitzky, Robins, and Babino (2017),
and Molina et al. (2017) for the case of a dynamic intervention.
We use cross-fitting to obtain n1/2-convergence of our estima-
tors while avoiding entropy conditions that may be violated
by data adaptive estimators of the nuisance parameters (Zheng
and van der Laan 2011; Chernozhukov et al. 2018). Finally,
we note that since the LMTP parameter studied in this paper
generalizes dynamic interventions for longitudinal studies, our
methods and software can also be used for estimation of those
parameters.
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2. Notation and Definition of Causal Effects

Let Z1, . . . , Zn denote a sample of iid observations with Z =
(L1, A1, L2, A2, . . . , Lτ , Aτ , Y) ∼ P, where Lt denotes time-
varying covariates, At denotes a vector of intervention variables
such as treatment and/or censoring status, and Y = Lτ+1
denotes an outcome such as survival at the end of study follow-
up. We let Pf = ∫

f (z)dP(z) for a given function f (z). We use
Pn to denote the empirical distribution of Z1, . . . Zn, and assume
P is an element of the nonparametric statistical model defined
as all continuous densities on Z with respect to a dominating
measure ν. We let E denote the expectation with respect to P,
that is, E{f (Z)} = ∫

f (z)dP(z) We also let ||f ||2 denote the L2(P)

norm
∫

f 2(z)dP(z). We use X̄t = (X1, . . . , Xt) to denote the
history of a variable, use Xt = (Xt , . . . , Xτ ) to denote the future
of a variable, and use Ht = (Āt−1, L̄t) to denote the history of
all variables up until just before At . For the complete history of a
random variable, we simplify X̄τ as X̄. We let gt(at | ht) denote
the probability density function of At conditional on Ht = ht .
We use calligraphic font to denote the support of a random
variable, for example, At denotes the support of At .

We formalize the definition of the causal effects using a non-
parametric structural equation model (Pearl 2009). Specifically,
for each time point t, we assume the existence of deterministic
functions fLt , fAt , and fY such that Lt = fLt (At−1, Ht−1, UL,t),
At = fAt (Ht , UA,t), and Y = fY(Aτ , Hτ , UY). Here, U =
(UL,t , UA,t , UY : t ∈ {1, . . . , τ }) is a vector of exogenous vari-
ables, with unrestricted joint distribution. Sufficient assump-
tions to identify the effects we discuss will be given in Sec-
tion 3. LMTP effects can be defined in terms of hypothet-
ical interventions where the equation At = fAt (Ht , UA,t)
is removed from the structural model, and the exposure is
assigned as a new random variable Adt . An intervention that
sets the exposures up to time t − 1 to Ādt−1 generates coun-
terfactual variables Lt(Ādt−1) = fLt (Adt−1, Ht−1(Ādt−2), UL,t) and
At(Ādt−1) = fAt (Ht(Ādt−1), UA,t), where the counterfactual his-
tory is defined recursively as Ht(Ādt−1) = (Ādt−1, L̄t(Ādt−1)).
The variable At(Ādt−1) is referred to as the natural value
of treatment (Richardson and Robins 2013; Young, Hernán,
and Robins 2014), and represents the value of treatment
that would have been observed at time t under an inter-
vention carried out up until time t − 1 but discontinued
thereafter. An intervention where all the treatment variables
up to t = τ are intervened on generates a counterfac-
tual outcome Y(Ād) = fY(Adτ , Hτ (Ādτ−1), UY). Causal effects
will be defined in terms of the distribution of this counter-
factual. We discuss two types of effects: longitudinal modi-
fied treatment policies (LMTPs), and LMTP stochastic inter-
ventions (LMTP-SI). Both effects are defined in terms of a
user-given function d(at , ht) that maps a treatment value at
and a history ht into a new exposure value. For fixed val-
ues āt , l̄t , we recursively define adt = d(at , hdt ), where
hdt = (ādt−1, l̄t). The LMTPs that we study are thus defined as
follows:

Definition 1 (Longitudinal modified treatment policies (LMTP)).
An intervention Adt is said to be a longitudinal modified treat-
ment policy if it is defined as Adt = d(At(Ādt−1), Ht(Ādt−1))
for a user-given function d. LMTP causal effects are defined as

contrasts between the distribution of counterfactual outcomes
Y(Ād) under different functions d.

This definition is a longitudinal generalization of the modi-
fied treatment policies defined by Haneuse and Rotnitzky (2013)
for a single time point, because at t = 1 the factual and natural
values of treatment coincide. For τ > 1, the modified treatment
policies in Definition 1 are a particular case of the interventions
that depend on the natural value of treatment first discussed by
Robins, Hernán, and Siebert (2004) and formalized by Richard-
son and Robins (2013) and Young, Hernán, and Robins (2014).

To illustrate some of our methods and ideas, we will consider
the following important examples of regimes d.

Example 1 (Threshold LMTP). We revisit a problem posed by
Taubman et al. (2009), in which we are interested in assessing
the effect of exercising at least 30 minutes a day on the risk
of coronary heart disease (CHD). Let At denote the minutes
exercised by each study participant, let Y denote an indicator of
CHD by the end of the study, and let Lt denote confounders such
as comorbidities and lifestyle variables. Let d(at , ht) = 1(at ≥
30)at + 1(at < 30)30. At time point t = 1, we define the
intervention as Ad1 = d(A1, H1), which would set the number of
minutes exercised to 30 if the participant exercised less than 30,
and would leave it unchanged otherwise. At time points t > 1,
we are interested in setting the amount of physical activity to 30
if the participant’s natural value of treatment at time t is smaller
than 30, and set it to the natural value of treatment otherwise.
That is, we define Adt = d(At(Ādt−1), Ht(Ādt−1)).

Example 2 (Shift LMTP). Let At denote a continuous exposure,
such as a drug dose or a physiological measurement such as P/F
ratio that can be modified through intervention. To define this
intervention, assume that At is supported as P(At ≤ ut(ht) |
Ht = ht) = 1 for some ut . Then, for a user-given value δ, we let

d(at , ht) =
{

at + δ if at ≤ ut(ht) − δ

at if at > ut(ht) − δ.
(1)

Then we define Adt = d(At(Ādt−1), Ht(Ādt−1)). This intervention
was first introduced in the context of a single time point by Díaz
and van der Laan (2012), and was further discussed by Díaz
and van der Laan (2018) and Haneuse and Rotnitzky (2013),
and by Díaz and Hejazi (2020) in the context of mediation.
This intervention considers hypothetical worlds in which the
natural exposure at time t is increased by a user-given value
δ, whenever such increase is feasible for a unit with history
Ht(Adt−1). In our motivating example, we assess the effect on
mortality of an intervention that would increase a patient’s P/F
ratio by 50 units for patients with acute respiratory failure (P/F
ratio < 300). Alternatively, we could define a multiplicative shift
asd(at , ht) = atδ(ht) for a shift function δ(ht) that may depend
on the history ht .

In some cases, an alternative intervention may be of interest.
Consider for example the implementation of a public health
intervention to encourage people to exercise more. In this
case, one could be interested in a post-intervention exposure
where the distribution of time exercise has shifted, but that
does not necessarily set each individual’s exposure to Adt =
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d(At(Ādt−1), Ht(Ādt−1)) with d defined in Equation (1). This
intervention is different from a modified treatment policy in
that we are not necessarily interested in shifting an individual’s
exposure. Instead, we wonder what would have happened in a
hypothetical world where each unit’s exposure was a random
draw from a shifted distribution, representing a behavior shift
at the population level. A LMTP stochastic intervention is then
formalized as:

Definition 2 (LMTP stochastic intervention (LMTP-SI)). Let Gdt
denote the distribution of d(At , Ht) conditional on Ht . A longi-
tudinal modified treatment policy stochastic intervention Q̄d is
defined as a sequence of random draws from Gdt : t = 1, . . . , τ .
LMTP-SI Causal effects are defined as contrasts between the
distribution of counterfactual outcomes Y(Q̄d) under different
functions d.

In the examples discussed so far we consider interventions
where the function d(at , ht) only depends on values of the
exposure at and the history ht . We note that the definition of
Richardson and Robins (2013) allowed for random regimes by
letting the functions d(at , ht , εt) depend on a randomizer εt .
It is easy to imagine such settings in practice. For example,
Robins, Hernán, and Siebert (2004) proposed to study the effect
on coronary heart disease of interventions where a random half
of smokers quit smoking forever. The methods that we present
next also allow for this type of random intervention. However,
we require some assumptions on the randomizer εt , namely that
(i) it is drawn independently across units and independently of
U, and (ii) its distribution does not depend on P. Under these
two assumptions, and with the aim of simplifying notation, we
assume without loss of generality that the time varying vector
Lt contains the randomizer εt . Another example of such a ran-
domized intervention is given below.

Example 3 (Incremental propensity score interventions).
Kennedy (2019) proposed an intervention for binary exposures
where Adt is a draw from a Bernoulli distribution with shifted
propensity score given by

gdt (1 | ht) = δgt(1 | ht)

δgt(1 | ht) + 1 − gt(1 | ht)
.

Let εt denote a random draw from a uniform distribution in the
interval (0, 1). Define the intervention as dt(at , ht) = 1{εt <

gdt (1 | ht)}.

In what follows we are concerned with identification and
nonparametric estimation of the causal parameters

θ lmtp = E{Y(Ād)}, and θ lmtp-si = E{Y(Q̄d)},

where Y(Ād) and Y(Q̄d) are defined above. The difference
between LMTP and LMTP-SI is subtle but important, and leads
to different assumptions required for identification, as we will
see in the next section.

3. Identification of Causal Effects

The first step in developing estimators for θ lmtp and θ lmtp-si is
to derive an identification result that allows us to write these

causal parameters as a function of only the distribution P of the
observed data Z. Sufficient assumptions to identify θ lmtp and
θ lmtp-si were first given by Richardson and Robins (2013) and
Young, Hernán, and Robins (2014). We first present sufficient
assumptions for identification under the assumed NPSEM, and
then discuss their implications in several scenarios.

Assumption 1 (Positivity). If (at , ht) ∈ supp{At , Ht} then
(d(at , ht), ht) ∈ supp{At , Ht} for t ∈ {1, . . . , τ }.

Assumption 2 (Standard sequential randomization). UA,t ⊥⊥
UL,t+1 | Ht for all t ∈ {1, . . . , τ }.

Assumption 3 (Strong sequential randomization). UA,t ⊥⊥
(UL,t+1, UA,t+1) | Ht for all t ∈ {1, . . . , τ }.

Assumption 1 is equivalent to the assumption presented in
Young, Hernán, and Robins (2014), and simply states that the
distribution of interest is supported in the data. Consider our
motivating example of the effect of P/F ratio on survival on ICU
patients. Under no loss-to-follow-up, this assumption states that
if it is possible to find a patient with history ht who has a P/F ratio
of at at time t, then it is also possible to find a patient with history
ht who has a P/F ratio ofd(at , ht). We note that this assumption
may be enforced by definition of d if sufficient information
is available about the conditional support of at conditional on
ht . Furthermore, if at is multivariate and includes missingness
or censoring indicators, then Assumption 1 also states that for
every observed history ht there is a probability greater than
zero of observing a patient who is not lost-to-follow-up at time
t. Assumption 2 is standard for the identification of dynamic
regimes, and is satisfied if all the common causes of the inter-
vention variable At and Ls : s > t are measured and recorded
in Ht . Assumption 3 is stronger than Assumption 2, and is
satisfied if all common causes of the intervention variable At and
(As, Ls) : s > t are measured and recorded in Ht . Assumption 3
is similar in nature to the independence assumption required
by Richardson and Robins (2013) (see Theorem 31 in that
reference).

We have the following identification theorem, which allows
us to compute the parameters θ lmtp and θ lmtp-si as a function
only of the observed data distribution.

Theorem 1 (Identification of the effect of LMTPs). Set mτ+1 = Y .
For t = τ , . . . , 1, recursively define

mt : (at , ht) �→ E
[

mt+1(Adt+1, Ht+1) | At = at , Ht = ht
]

,
(2)

and define θ = E[m1(Ad1 , L1)]. Then we have

(i) Under Assumptions 1 and 2, θ lmtp-si is identified as θ .
(ii) Under Assumptions 1 and 3, θ lmtp is identified as θ .

The identification expression given in Theorem 1 in terms
of sequential regressions is an alternative expression of the
extended g-formula of Robins, Hernán, and Siebert (2004) and
Richardson and Robins (2013). In addition to allowing for a
variety of interesting interventions, this setup allows for a variety
of data structures. In particular, it can handle loss-to-follow-up,
survival analysis, and missing exposures as follows. Let At =
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(A1,t , A2,t), where A1,t denotes the exposure at time t, and A2,t
is equal to one if the unit remains uncensored at time t + 1
and zero otherwise. Assume monotone loss-to-follow-up so that
A2,t = 0 implies A2,k = 0 for all k > t, in which case (Lk, A1,k)
and Y become degenerate for k > t. In this case we could be
interested in a hypothetical world in which there is no loss-to-
follow-up and the exposure A1,t is shifted as in Equation (1) or
any other intervention of interest. In particular, we can define
Adt = (d{At,1(Ādt−1,1), Ht(Ādt−1,1)}, 1). Time-varying outcomes
can be incorporated by letting Lt = (Xt , Yt−1), where Xt denotes
the time-varying covariates of interest and Yt denotes the time-
varying outcome, and letting Y = Yτ . If a prior time point k
is of interest, then we let Y = Yk and truncate the sequence
at τ = k. Time-to-event analysis may be performed by letting
Yt denote an indicator that a unit is event free at time t, and
letting A2,t denote an indicator that the unit is uncensored at
time t + 1. This definition of the random variables imposes
restrictions on the functions mt and rt , which must be taken into
account in estimation. For example, we know by definition that
mt(at , ht) = 1 for ht such that ys = 1 for any s < t.

4. Optimality Theory

Thus, far we have derived a novel sequential regression for-
mula that identifies the effect of an LMTP. We now turn our
attention to a discussion of efficiency theory for its estimation
in the nonparametric model. The efficient influence function
(EIF) is a key object in semi-parametric estimation theory,
as it characterizes the asymptotic behavior of all regular and
efficient estimators (Bickel et al. 1997). Knowledge of the EIF
has important practical implications. First, the EIF is often use-
ful in constructing locally efficient estimators. Second, the EIF
estimating equation often enjoys desirable properties such as
multiple robustness, which allows for some components of the
data distribution to be inconsistently estimated while preserv-
ing consistency of the estimator. Third, asymptotic analysis of
estimators constructed using the EIF often yields second-order
bias terms, which require slow convergence rates (e.g., n−1/4)
for the nuisance parameters involved, thereby enabling the use
of flexible regression techniques in estimating these quantities.
Before we proceed developing such theory, note that it is not
possible to construct n1/2-consistent estimators of θ for the
threshold intervention in Example 1 whered(at , lt) = at1(at ≤
δ) + δI(at > δ). This is because the parameter is not pathwise
differentiable. Intuitively, inspection of the parameter definition
for τ = 1 yields the reason for the lack of n1/2-estimability

θ = E{m(A1(A ≤ δ) + δ1(A > δ), L)}
= E{m(A, L)1(A ≤ δ)} + E{m(δ, L)1(A > δ)}.

The term E{m(δ, L)1(A > δ)} in this expression involves
estimation of the causal effect of a static intervention setting a
continuous exposure to A = δ. Efficient estimation theory is
not available for estimation of such parameters in the nonpara-
metric model (Bickel et al. 1997), since all possible gradients
of the pathwise derivative would necessarily involve a Dirac
delta function at δ. An alternative approach to overcome this
issue is to redefine the regime d so that the parameter becomes
pathwise differentiable. Such approach is taken by Díaz and

van der Laan (2013a); the interested reader is encouraged to
consult the original research article. In this article, we avoid
this problem by only considering interventions that satisfy the
following assumption, which is a straightforward generalization
of the assumption of Haneuse and Rotnitzky (2013) for τ = 1.

Assumption 4 (Piecewise smooth invertibility for continuous
exposures). For each ht , assume that the support of At condi-
tional on Ht = ht may be partitioned into subintervals It,j(ht) :
j = 1, . . . , Jt(ht) such thatd(at , ht) is equal to somedj(at , ht) in
It,j(ht) anddj(·, ht) has inverse functionbj(·, ht) with derivative
b′

j(·, ht) with respect to at .

Define

gdt (at | ht) =
Jt(ht)∑
j=1

1t,j{bj(at , ht), ht}gt{bj(at , ht) | ht}|b′
j(at , ht)|, (3)

where 1t,j{u, ht} = 1 if u ∈ It,j(ht) and 1t,j{u, ht} = 0
otherwise. Under Assumption 4, it is easy to show that the p.d.f.
of Adt conditional on the history ht is gdt (at | ht). In the case of
equation (1) the post-intervention p.d.f. becomes

gdt (at | ht) = gt(at − δ | ht)1{at < ut(ht)}
+ gt(at | ht)1{at + δ ≥ ut(ht)},

which shows that piecewise smoothness is sufficient to handle
interventions such as Equation (1) which are not smooth in the
whole range of the exposure.

For discrete exposure variables, we let

gdt (at | ht) =
∑

st∈At

1{d(st , ht) = at}gt(st | ht).

Assumption 4 and expression (3) ensure that we can use the
change of variable formula when computing integrals over At
for continuous exposures. This is useful for studying properties
of the parameter and estimators we propose.

Efficiency theory in this paper focuses on functions d that
do not depend on P (recall that the function is deterministic
but allowed to take a randomizer as argument). Assumption 4
together with this assumption will ensure that the efficient influ-
ence function of θ for LMTPs has a structure similar to the
influence function for the effect of dynamic regimes. This yields
two important advantages for estimation. First, the structure
of the EIF allows for multiply robust estimation, which is not
generally possible for random regimes d that depend on P. See
Díaz and van der Laan (2013a) and Kennedy (2019) (Example 3)
for examples. Second, this similarity will allow us to generalize
existing estimators for dynamic regimes. In what follows it will
be useful to define the density ratio

rt(at , ht) = gdt (at | ht)

gt(at | ht)
,

and the function

φt : z �→
τ∑

s=t

( s∏
k=t

rk(ak, hk)

)
{ms+1(ads+1, hs+1) − ms(as, hs)}

+ mt(adt , ht) (4)
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for t = τ , . . . , 1. When necessary, we use the nota-
tion φt(z; η) or φt(z; ηt) to highlight the dependence of φt
on ηt = (rt , mt , . . . , rτ , mτ ) . We also use η to denote
(r1, m1, . . . , rτ , mτ ), and define φτ+1(Z; η) = Y .

Theorem 2 (Efficient Influence Function). Assume one of:

1. At is a discrete random variable for all t, or
2. At is a continuous random variable and the modified treat-

ment policy d satisfies Assumption 4.

Assume that d does not depend on P. The efficient influence
function for estimating θ = E[m1(Ad, L1)] in the nonparamet-
ric model is given by φ1(Z) − θ .

Note that if τ = 1, then φ1(Z) − θ reduces to the effi-
cient influence function for a single time point intervention
presented by Díaz and van der Laan (2012), equal to r(A, L)[Y −
m(A, L)]+ m(d(A, L), L)− θ . For the case τ = 1, the efficiency
bound equals Var{φ1(Z) − θ} = E[r2(A, L)Var(Y | A, L)] +
E[m(d(A, L), L) − θ ]2, which depends on three features of the
data distribution and intervention: (i) the conditional variance
of the outcome Var(Y | A, L), (ii) the amount of treatment
effect heterogeneity E[m(d(A, L), L) − θ ]2, and (iii) the extent
to which the intervention d differs from the observed regime,
as measured by the density ratio r(A, L). Furthermore, inter-
ventions that exert large exposure density changes in areas of
high outcome variability are expected to yield larger efficiency
bounds, since r2(A, L) and the variance Var(Y | A, L) are
positively correlated in such cases.

In the following, we let η′ = (r′1, m′
1, . . . , r′τ , m′

τ ) denote
some value of η. This value will typically represent the probabil-
ity limit of a given estimator η̂. The efficient influence function
satisfies the following property, which will be crucial to establish
consistency of some estimators of θ under multiple robustness
assumptions, and to construct estimators of θ under slow con-
vergence rates for estimation of rt and mt .

Lemma 1 (First-order parameter approximation). Let

C′
t,s =

s−1∏
r=t+1

r′r(Ar , Hr).

For each t ∈ {0, . . . , τ − 1}, and for any η′, define the second-
order error term

Remt(at , ht ; η′) =
τ∑

s=t+1
E
[

C′
t,s{r′s(As, Hs) − rs(As, Hs)}{m′

s(As, Hs) − ms(As, Hs)}
∣∣∣∣

At = at , Ht = ht

]
, (5)

where for t = 0 the conditioning event is the null set, and for
t = τ we let Remτ (aτ , hτ ; η′) = 0. Under Assumption 4 we have

mt(at , ht) = E
[
φt+1(Z; η′) | At = at , Ht = ht

]
+ Remt(at , ht ; η′). (6)

This lemma is analogous to Lemma 1 in Luedtke et al.
(2017) and Lemma 2 in Rotnitzky, Robins, and Babino (2017)
for the standard g-formula for dynamic regimes. Furthermore,

this lemma shares important connections to the von Mises-
type expansions used in some of the semi-parametric inference
literature (e.g., von Mises 1947; van der Vaart 1998; Robins et al.
2009). For t = 0, inspection of this lemma teaches us that it
is possible to construct a consistent estimator of θ by averaging
φ1(Zi; η̂) across the sample, where η̂ is an estimator such that
Rem0(η̂) = oP(1). The latter consistency can be achieved under
the condition that for each t, either rt or mt can be estimated
consistently. This robustness is an interesting property in light
of the fact that the parameter θ depends on both rt and mt for
all t.

5. Estimation and Statistical Inference

In this section we assume that preliminary estimators r̂t , and
m̂t are available. These estimators may be obtained from flex-
ible regression techniques such as support vector machines,
regression trees, boosting, neural networks, splines, or ensem-
bles thereof (Breiman 1996; van der Laan, Polley, and Hub-
bard 2007). As previously discussed, the consistency of these
estimators will determine the consistency of our estimators of
the parameter θ . In particular, mt : t = 1, . . . , τ may be
estimated as follows. Start by running a preferred regression
algorithm of mτ+1,i = Yi on (Aτ ,i, Hτ ,i). Then evaluate the
estimator m̂τ at (Adτ ,i, Hτ ,i), that is, compute the prediction
m̂τ (Adτ ,i, Hτ ,i). Use this prediction as the pseudo-outcome in
a regression on (Aτ−1,i, Hτ−1,i), to obtain an estimate m̂τ−1.
Compute the pseudo-outcome m̂τ−1(Adτ−1,i, Hτ−1,i) and iterate
the process until obtaining an estimate m̂1. For this and other
estimators presented below it will be necessary to specify a
regression algorithm to estimate conditional expectations. In
this paper we advocate for the use of data-adaptive regression
methods, which avoid reliance on tenuous parametric assump-
tions that can invalidate the conclusions of an otherwise well-
designed and conducted study. In particular, we propose to use
an ensemble regression algorithm known as the Super Learner
(van der Laan, Polley, and Hubbard 2007), which builds a convex
combination of regression algorithms in a user-given library,
with weights chosen to minimize the cross-validated prediction
error. While estimation methods for conditional expectations
abound in the statistics and machine learning literature, data-
adaptive methods to estimate a multivariate density ratio such
as rt are scarce. In Section 5.4 we present a method in which
we recast the density ratio estimation problem as a classification
problem based on 2n observations. Once the problem is recast in
this way, any classification method from the statistical learning
literature (such as Super Learning) may be used to estimate the
density ratio rt .

We start this section by discussing two simple estimators:
inverse probability weighting and g-computation or substitu-
tion estimators. These estimators cannot generally achieve n1/2-
consistency under data-adaptive estimation of the nuisance
parameters in a nonparametric model. We then present a tar-
geted minimum loss-based estimator which is locally efficient,
n1/2-consistent, and τ + 1-multiply robust consistent, under
assumptions. We then present a sequential regression estimator
which has the same properties but has the additional advantage
that it is 2τ -multiply robust consistent.
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5.1. Substitution and Inverse Probability Weighted
Estimators

The substitution estimator simply uses the preliminary estima-
tor of mt described above along with the recursive definition in
Equation (2)

θ̂ sub = 1
n

n∑
i=1

m̂1(Ad1,i, L1,i).

The IPW estimator is based on the observation that, under
Assumption 4, we have the following alternative representation
of the parameter of interest (see Lemma 2 in the supplementary
materials):

θ = E

[(
τ∏

t=1
rt(At , Ht)

)
Y

]
.

Thus, for estimators r̂t of rt , we define

θ̂ ipw = 1
n

n∑
i=1

(
τ∏

t=1
r̂t(At,i, Ht,i)

)
Yi.

This estimator is an extension of the estimator proposed by
Young, Hernán, and Robins (2014), where we allow the use of
machine learning methods to estimate the density ratio (see
Section 5.4).

If mt and rt are estimated within prespecified parametric
models, then, by the delta method, both θ̂ sub and θ̂ ipw are
asymptotically linear. In addition, they are n1/2-consistent if the
models are correctly specified. The bootstrap or an influence
function-based estimator may be used to construct asymptot-
ically correct confidence intervals. However, if the time-varying
variables are high-dimensional or there are too many time
points such that smoothing is necessary, the required consis-
tency of m̂t and r̂t will hardly be achievable within parametric
models. This issue may be alleviated through the use of data-
adaptive estimators. Unfortunately, n1/2-consistency of θ̂ sub and
θ̂ ipw will generally require that m̂t and r̂t are consistent in L2(P)-
norm at parametric rate, which is generally not possible when
using data-adaptive estimation of high-dimensional regressions.
Thus, the asymptotic distribution will generally be unknown,
making it difficult to construct confidence intervals and hypoth-
esis tests. In the following, we use the efficient influence function
to propose two estimators that are n1/2-consistent and efficient
under weaker assumptions, requiring only n1/2-convergence of
the second-order regression bias term Rem0(η̂).

5.2. Targeted Minimum Loss-Based Estimator

We start by presenting a generalization of the estimator we
proposed for the case of an LMTP in a single time point in
Díaz and van der Laan (2018), which is also a generalization
of the estimator proposed by van der Laan and Gruber (2012)
for longitudinal dynamic regimes. Compared to the estimator
we proposed in Díaz and van der Laan (2012), the proposal in
Díaz and van der Laan (2018) has the advantage that it does
not require a tilting model for the density gt , which may be
computationally intensive. In order to avoid imposing entropy
conditions on the initial estimators, we use sample splitting and

cross-fitting (Klaassen 1987; Zheng and van der Laan 2011;
Chernozhukov et al. 2018). Let V1, . . . ,VJ denote a random
partition of the index set {1, . . . , n} into J prediction sets of
approximately the same size. That is,Vj ⊂ {1, . . . , n};

⋃J
j=1 Vj =

{1, . . . , n}; andVj∩Vj′ = ∅. In addition, for each j, the associated
training sample is given by Tj = {1, . . . , n} \Vj. We let η̂j denote
the estimator of η obtained by training the corresponding pre-
diction algorithm using only data in the sample Tj. Further, we
let j(i) denote the index of the validation set which contains
observation i.

The targeted minimum loss-based estimator θ̂ tmle is com-
puted as a substitution estimator that uses an estimate m̃1,j(i)
carefully constructed to solve the cross-validated efficient influ-
ence function estimating equation Pn{φ1(·, η̃j(·)) − θ̂ tmle} = 0.
The construction of m̃1,j(i) is motivated by the observation that
the efficient influence function of θ can be expressed as a sum
of terms of the form:( t∏

k=1
rk(ak, hk)

)
{mt+1(adt+1, ht+1) − mt(at , ht)},

which take the form of score functions ω(W){M − E(M | W)}
for appropriately defined variables M and W and some weight
function ω. It is well known that if E(M | W) is estimated within
a weighted generalized linear model with canonical link that
includes an intercept, then the weighted MLE estimate solves the
score equation

∑
i ω(Wi){Mi − Ê(Mi | Wi)} = 0. TMLE uses

this observation to iteratively tilt preliminary estimates of mt
toward a solution of the efficient influence function estimating
equation. The algorithm is defined as follows:

Step 1. Initialize η̃ = η̂ and m̃τ+1,j(i)(Adτ+1,i, Hτ+1,i) = Yi.
Step 2. For s = 1, . . . , τ , compute the weights

ωs,i =
s∏

k=1
r̂k,j(i)(Ak,i, Hk,i)

Step 3. For t = τ , . . . , 1:

• Fit the generalized linear tilting model

link m̃ε
t (At,i, Ht,i) = ε + link m̃t,j(i)(At,1, Ht,i)

where link(·) is the canonical link. Here,
linkm̃t,j(i)(at , ht) is an offset variable (i.e., a variable
with known parameter value equal to one). The
parameter ε may be estimated by running a
generalized linear model of the pseudo-outcome
m̃t+1,j(i)(Adt+1,i, Ht+1,i) with only an intercept term,
an offset term equal to linkm̃t,j(i)(At,i, Ht,i), and
weights ωt,i, using all the data points in the sample.
An outcome bounded in an interval [a, b] may be
analyzed with logistic regression (i.e., link = logit)
by mapping it to an outcome (0, 1) through the
transformation (Y −a)/(b−a)(1−2ε)+ε for some
small value ε > 0. This approach has robustness
advantages compared to fitting a linear model as
it guarantees that the predictions in the next step
remain within the outcome space (Gruber and
van der Laan see 2010).
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• Let ε̂ denote the maximum likelihood estimate, and
update the estimates as

linkm̃ε̂
t,j(i)(At,i, Ht,i) = ε̂ + linkm̃t,j(i)(At,i, Ht,i)

linkm̃ε̂
t,j(i)(Adt,i, Ht,i) = ε̂ + linkm̃t,j(i)(Adt,i, Ht,i).

The above procedure with canonical link guarantees
the following score equation is solved:

1
n

n∑
i=1

( t∏
k=1

r̂k,j(i)(Ak,i, Hk,i)

)
{m̃t+1,j(i)(Adt+1,i, Ht+1,i)

− m̃ε̂
t,j(i)(At,i, Ht,i)} = 0

• Update m̃t,j(i) = m̃ε̂
t,j(i), t = t − 1, and iterate.

Step 4. The TMLE is defined as

θ̂ tmle = 1
n

n∑
i=1

m̃1,j(i)(Ad1,i, L1,i).

The iterative procedure and the score equation argument above
guarantee that

1
n

n∑
i=1

τ∑
t=1

( t∏
k=1

r̂k,j(i)(Ak,i, Hk,i)

)
{m̃t+1,j(i)(Adt+1,i, Ht+1,i)

− m̃t,j(i)(At,i, Ht,i)} = 0,

and thus that Pn{φη̃j(·)
1 − θ̂ tmle} = 0. This fact is crucial to prove

the weak convergence result of θ̂ tmle in Theorem 3, which is
useful to construct confidence intervals and hypothesis tests.

Theorem 3 (Weak convergence of TMLE). Assume the condi-
tions of Theorem 2 hold. Assume that

∑τ
t=1 ||r̂t − rt|| ||m̃t −

mt|| = oP(n−1/2) and that P{rt(At , Ht) < c} = P{r̂t(At , Ht) <

c} = 1 for some c < ∞. Then
√

n(θ̂ tmle − θ) � N(0, σ 2),

where σ 2 = Var{φ1(Z; η)} is the nonparametric efficiency
bound.

Note that n1/2-consistency of the TMLE requires consistent
estimation of all nuisance parameters (rt , mt) : t = 1, . . . , τ at
the rates stated in the theorem. The delta method implies these
rates would be trivially achieved if rt and mt were estimated
within correctly prespecified parametric models. The required
rates may also be achievable by many data-adaptive regres-
sion algorithms. For example, these rates would be satisfied if
||r̂t − rt|| = oP(n−1/4) and ||m̃t − mt|| = oP(n−1/4). For rt ,
the n−1/4-rate may be achievable by �1 regularization (Bickel
et al. 2009), regression trees (Wager and Walther 2015), neural
networks (Chen and White 1999), or the highly adaptive lasso
(Benkeser and van der Laan 2016). For mt , establishing the n1/4-
rate requires more careful analysis as the outcome is fitted from
data. Specifically, it is possible to bound the regression error in
terms of an error related to estimation of the outcome plus an
error purely due to regression estimation. Methods to study this
type of two-stage estimator can be found in Ai and Chen (2003),
Rubin and van der Laan (2005), Foster and Syrgkanis (2019),
and Kennedy (2020), among others.

Beyond the
√

n-consistency implied by Theorem 3, the
TMLE is also multiply robust consistent under τ + 1 configu-
rations of consistency in estimation of the nuisance parameters
rt and mt .

Lemma 2 (τ + 1 multiply robust consistency of TMLE). Assume
the conditions of Theorem 2 hold. Assume that there is a time k
such that ||m̃t−mt|| = oPy(1) for all t > k and ||r̂t−rt|| = oP(1)

for all t ≤ k. Then we have θ̂ tmle = θ + oP(1).

Lemma 2 is a direct consequence of Equation (3) in the sup-
plementary materials together with the expression for Rem1(η)

in Equation (5). Note that although mt implicitly depends on
gt+1, . . . , gτ , it is possible to construct estimators that achieve
the conditions of the lemma, as the parameterization (2) means
mt and gt+1, . . . , gτ are in fact variation independent, that is,
one can construct consistent estimators of mt without relying
on consistent estimators of gt+1, . . . , gτ .

Inspection of Rem1(η) teaches us that a result stronger than
Lemma 2 should be possible, that is, consistent estimation of θ

should be achievable under a weaker sequential doubly robust
consistent (SDR) assumption that ||m̃t − mt|| = oP(1) ∨
||r̂t − rt|| = oP(1) for all t. Note, however, that estimators
of θ (such as TMLE) that use the recursive definition in (2)
to estimate mt can only be expected to satisfy the assumption
in the Lemma 2 (and not 2τ -multiple robustness) because mt
cannot generally be consistently estimated using the recursive
definition (2) unless ms is consistently estimated for all s > t.
In the following we present a sequential regression estimator
that overcomes this limitation by using expression (6) instead
of Equation (2) to estimate mt . This fact motivates our use of
the name sequentially doubly robust since the estimator relies on
the fact that each mt can be consistently estimated even if ms is
inconsistently estimated for some s > t. This is in contrast to
the more common name 2τ -multiply robust, which only applies
to the estimator of θ .

5.3. Sequential Regression Estimator Using SDR Unbiased
Transformations

In this section we use the multiply robust unbiased transfor-
mation in expression (6) to obtain an estimate of mt . This
estimator is an extension to LMTPs of estimators proposed
by Luedtke et al. (2017) and Rotnitzky, Robins, and Babino
(2017) for longitudinal dynamic regimes. We say that φt+1 is
a multiply robust unbiased transformation for mt due to the
following proposition, which is a straightforward consequence
of Lemma 1.

Proposition 1. Let η′ be such that either m′
s = ms or r′s = rs for

all s > t. Then we have

E
[
φt+1(Z; η′) | At = at , Ht = ht

] = mt(at , ht).

This lemma motivates the construction of the sequential
regression estimator by iteratively regressing an estimate of
the data transformation φt+1(Z; η) on (At , Ht), starting at
φτ+1(Z; η) = Y . Similar ideas have been used by others to
obtain estimates of various causal inference parameters (Buck-
ley and James 1979; Rubin and van der Laan 2007; Díaz and

https://doi.org/10.1080/01621459.2021.1955691
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van der Laan 2013b; Kennedy et al. 2017; Luedtke et al. 2017).
For preliminary cross-fitted estimates r̂1,j(i), . . . , r̂τ ,j(i), the esti-
mator is defined as follows:

Step 1. Initialize φτ+1(Zi; η̌τ ,j(i)) = Yi for i = 1, . . . , n.
Step 2. For t = τ , . . . , 1:

• Compute the pseudo-outcome Y̌t+1,i =
φt+1(Zi; η̌t,j(i)) for all i = 1, . . . , n.

• For j = 1, . . . , J:

– Regress Y̌t+1,i on (At,i,Ht,i) using any regression
technique and using only data points i ∈ Tj.

– Let m̌t,j denote the output, update η̌t,j =
(r̂t,j, m̌t,j, . . . , r̂τ ,j, m̌τ ,j), and iterate.

Step 3. Define the sequential estimator regression as

θ̂ sr = 1
n

n∑
i=1

φ1(Zi; η̌j(i)).

To prove that the SDR estimator is sequentially doubly robust
consistent, it will be useful to have the following alternative
representation of Remt(at , ht ; η). Define the data-dependent
parameter

m̌†(at , ht) = E
[
φt+1(Z; η̌t) | At = at , Ht = ht

]
,

where the outer expectation is only with respect of the distribu-
tion P of Z (i.e., η̌ is fixed). Equation (6) yields

mt(at , ht) = m̌†
t (at , ht) + Remt(at , ht ; η̌). (7)

An induction argument together with Equation (5) yields the
lemma below (proved in the supplementary materials).

Lemma 3. Assume that P{rt(At , Ht) < c} = P{r̂t(At , Ht) <

c} = 1 for some c < ∞. Then

Rem0(η̌) =
τ∑

t=1
OP

(||r̂t − rt|| ||m̌t − m̌†
t ||

)
. (8)

In comparison to Equation (5), the representation of the
remainder term in Equation (8) avoids iterative definitions of
the regression error terms involved. Unlike ||m̌t − mt||, which
implicitly depends on all ||m̌s − ms|| : s > t, the error
term ||m̌t − m̌†

t || depends only on the consistency of regres-
sion procedure used in 5.3 to estimate the outer expectation
in expression (7). This representation is thus more useful to
establish sequential doubly robust consistency. In particular, we
have:

Lemma 4 (2τ -multiply robust consistency of SDR estimator).
Assume the conditions of Theorem 2 hold. Assume that, for each
time t, either ||r̂t − rt|| = oP(1) or ||m̌t − m̌†

t || = oP(1) . Then
we have θ̂ sr = θ + oP(1).

The sequential regression estimator also satisfies a weak con-
vergence result analogous to Theorem 3:

Theorem 4 (Weak convergence of SDR estimator). Assume
the conditions of Theorem 2 hold. Assume that

∑τ
t=1 ||r̂t −

rt|| ||m̌t − m̌†
t || = oP(n−1/2) and that P{rt(At , Ht) < c} =

P{r̂t(At , Ht) < c}1 for some c < ∞. Then
√

n(θ̂ sr − θ) � N(0, σ 2),

where σ 2 = var{φ1(Z; η)} is the nonparametric efficiency
bound.

Like its TMLE counterpart, the above theorem may be
used to construct asymptotically valid confidence intervals and
hypothesis tests. For example, the standard error may be esti-
mated as the empirical variance of φ1(Z; η̌j(i)), and this standard
error may be used to compute Wald-type confidence intervals.

We note that the rates required for n1/2-consistency in The-
orems 3 and 4 are the same for the TMLE and SDR, and in this
sense the SDR estimator does not seem to confer asymptotic
advantages with respect to the TMLE. Furthermore, the TMLE
and SDR estimators proposed in this paper do not allow for
the construction of multiply robust confidence regions or p-
values. Much of the recent literature focused on solving this
problem proposes the construction of estimators that remain
n1/2-consistent under multiply robust consistency assumptions
on the nuisance estimators. The interested reader is referred
to van der Laan (2014), Farrell (2015), Benkeser et al. (2016),
Díaz and van der Laan (2017), Díaz (2019), Smucler, Rotnitzky,
and Robins (2019), and references therein as examples of this
literature. The SDR and TMLE estimators proposed here could
possibly be adapted to satisfy this property through extension of
the methods of Díaz (2019) to LMTPs.

Lemmas 2 and 4 only state the conditions for consistency
and do not provide the convergence rate of the TMLE and SDR
under misspecification of the nuisance parameters. For example,
for τ = 2 with m2 inconsistently estimated we know the
TMLE will always be inconsistent and the SDR estimator may
be consistent if the other conditions of Lemma 4 hold. However,
the rate of consistency of the SDR in this case is unknown. We
conjecture that the additional robustness of the SDR conferred
by Lemma 4 endows this estimator with better finite sample
behavior compared to the TMLE. We explore this conjecture
in our simulation studies in Section 1 of the supplementary
materials.

An important possible drawback of the sequential regression
estimator is that the pseudo-outcome Y̌t,i may be outside the
bounds of the original outcome, which may in turn yield a
parameter estimate θ̂ sr out of bounds of the parameter space.
This may be especially problematic if the intervention d is
allowed to yield near violations of the positivity assumption, in
which case the density ratio rt may be highly variable. While this
can be remedied using truncation, an extension of the sequen-
tial regression infinite-dimensional TMLE strategy proposed by
Luedtke et al. (2017) for the case of a static intervention may
offer a more principled solution.

5.4. Density Ratio Estimation Via Classification

The estimators proposed in the previous sections require a
preliminary estimator of the density ratio rt . A possible strategy
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to estimate this density ratio is to obtain estimates of the density
gt and plug them into the definition of gdt to compute the ratio.
This approach may fail for several reasons, the most important
being that data-adaptive estimators for high-dimensional condi-
tional densities are scarce in the machine and statistical learning
literature. In this section we propose a different approach, in
which we recast the problem of estimating the density ratio rt in
terms of a classification problem in an augmented dataset that
contains 2n observations (Qin 1998; Cheng et al. 2004).

For a fixed time point, consider an augmented dataset of size
2n in which we have duplicated each observation. In this aug-
mented dataset, one of the duplicated records gets assigned the
actually observed exposure, At , and the other one gets assigned
exposure under the intervention, Adt . We also introduce an
indicator variable 
, which is equal to one if the duplicated
observation corresponds to the treatment under intervention,
and zero otherwise. The augmented dataset can be represented
as follows: (Hλ,i,t , Aλ,i,t , 
λ,i : λ = 0, 1; i = 1, . . . , n), where

λ,i = λ indexes the duplicates, Hλ,i,t = Hi,t is the history
variable and is equal for both duplicated records, and Aλ,i,t =
λ × Adi,t + (1 − λ) × Ai,t is the natural exposure level if λ = 0,
and the intervened exposure level if λ = 1.

Denote the probability distribution of (Ht , At , 
) in the aug-
mented dataset by Pλ, and the corresponding density by Pλ.
Define the following parameter of Pλ:

uλ
t (at , ht) = Pλ(
 = 1 | At = at , Ht = ht).

Then, we have the following relation between the density ratio
rt and the distribution Pλ:

rt(at , ht) = Pλ(at , ht | 
 = 1)

Pλ(at , ht | 
 = 0)

= Pλ(
 = 1 | At = at , Ht = ht)

Pλ(
 = 0 | At = at , Ht = ht)

= uλ
t (at , ht)

1 − uλ
t (at , ht)

,

where the first equality follows by definition of rt and the def-
inition of conditional density, the second follows by Bayes rule
and the observation that 1/2 = Pλ(
 = 1) = Pλ(
 = 0), and
the last one by definition. Thus, estimation of the density ratio
may be carried out by estimating uλ in the augmented dataset via
any classification method available in the machine and statistical
learning literature (e.g., super learning). In order to preserve
properties of the estimator such as the asymptotic normality
presented in Theorems 3 and 4, cross-validation and cross-
fitting should be performed as follows. Let V1, . . . ,VJ denote a
random partition of the index set {1, . . . , n} as in Section 5.2,
and let Tj = {1, . . . , n}\Vj. The estimator r̂t,j(i)(Ai,t , Hi,t) may be
computed as ûλ

t,j(i)(Ai,t , Hi,t)/{1 − ûλ
t,j(i)(Ai,t , Hi,t)} where uλ

t,j(i)
is the result of training a classification algorithm using data
(Aλ,i,t , Hλ,i,t , 
λ,i : λ = 0, 1; i ∈ Tj(i)). This cross-validation
scheme is necessary because the rows in the augmented dataset
are not iid Performing cross-validation on the index set {i :
1, . . . , n} rather than {λ = 0, 1; i = 1, . . . , n} ensures that certain
independencies required for the proofs of Theorems 3 and 4
remain true.

6. Illustrative Application

To illustrate the proposed methods, we estimate the effect of
an intervention on patients with acute respiratory failure on
14-day survival among 10,044 intubated ICU patients. The
data used in this illustration is the Weill Cornell Critical carE
Database for Advanced Research (WC-CEDAR), a comprehen-
sive data repository containing demographic, laboratory, proce-
dure, diagnosis, medication, microbiology, and flow sheet data
documented as part of standard care. I

The study cohort includes patients who are invasively
mechanically ventilated. Study time begins at their time of
intubation. The exposure of interest is the worst daily arte-
rial partial pressure of oxygen to fraction of inspired oxygen
(PaO2 to Fio2, or P/F) ratio. The P/F ratio is a continuous
measure of hypoxemia and is used to quantify the severity of
acute respiratory failure. For example, the Berlin definition of
Acute Respiratory Distress Syndrome (ARDS) uses a P/F ratio
of < 100 for its classification of severe ARDS, 100 ≤ P/F ratio
< 200 for moderate ARDS, and 200 ≤ P/F ratio < 300 for
mild. There are several ways physicians can intervene on an
individual patient’s P/F ratio, but the most direct modifications
are through supplemental oxygen, for example, invasive and
noninvasive forms of mechanical ventilation. When a patient
is mechanically ventilated, various changes to device param-
eters can significantly affect the patient’s P/F ratio. Among
other interventions to increase patients’ P/F ratios are neuro-
muscular blockade medications, physical techniques such as
prone positioning, and treating the underlying condition e.g.
administering loop diuretic, antibiotics or steroids. Some of
these interventions have negative effects such as hypotension
and renal failure. Our goal is to estimate the overall effect on
survival from the time of invasive mechanical ventilation of an
intervention that would increase the P/F ratio by 50 among
patients with clinically defined acute respiratory failure (P/F
ratio < 300). An increase of 50 is both clinically feasible and
clinically meaningful. Figure 1 shows an example of the pre- and
postintervention distribution of the P/F ratio for day 1.

Baseline confounders include age, sex, race, number of Elix-
hauser comorbidities, and pneumonia status. Time-dependent

Figure 1. Pre- and postintervention distribution of the P/F ratio at day 1 in our
illustrative application.
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Table 1. Estimated 28-day ICU mortality under the observed P/F ratios and a treatment policy that increases P/F ratio by 50 units when below 300.

No shift Trt. Policy Trt. Effect

Estimator Estimate SE 95% CI Estimate SE 95% CI Estimate SE 95% CI P

IPW 0.754 – (–, –) 0.978 – (–, –) 0.223 – (–, –) –
Sub. 0.877 – (–, –) 0.891 – (–, –) 0.014 – (–, –) –
TMLE 0.888 0.004 (0.880, 0.895) 0.896 0.009 (0.879, 0.914) 0.009 0.008 (−0.006, 0.024) 0.244
SDR 0.883 0.004 (0.875, 0.890) 0.898 0.009 (0.880, 0.915) 0.015 0.008 (−0.001, 0.030) 0.053

confounders include daily mechanical ventilation status (inva-
sive or non-invasive) and the Sequential Organ Failure Assess-
ment (SOFA) score with the pulmonary component removed.
Patients are censored at their day of hospital discharge, as vital
status was unknown after this point.

We estimate the effect of the LMTP using substitution, IPW,
TMLE, and SDR estimation. The functions rt and mt are esti-
mated using the Super Learner (van der Laan, Polley, and
Hubbard 2007). We included multivariate adaptive regression
splines (MARS), extreme gradient boosting, logistic regression
with �1 regularization (LASSO), and simple logistic regression
as our candidate learners. Importantly, the estimators of rt and
mt condition on the complete history of all variables and do not
make Markov assumptions. The average weights given to each
learner at each of the 14 time points for r and m are shown in
Figure 3 in the supplementary materials. Using SDR to adjust
for right censoring, we estimated the 14-day survival under no
intervention on P/F ratios to be 88.3% (95% CI 87.5, 89.0%).
The estimate under an increase of 50 among hypoxic patients
is estimated as 89.8% (95% CI 88.0, 91.5%). This intervention
would increase 14-day survival by 1.5% (95% CI −0.1, 3%). All
results, including those using the TMLE, substitution, and IPW
estimators, can be found in Table 1.

While the substitution estimator as well as the TMLE and
SDR estimators produced comparable results, the IPW estimates
an increase of 22% in survival. The disagreement between the
IPW and other estimators is due to the high variability of the
density ratios, which make the IPW estimator highly variable.
For example, the weights

∏τ
t=1 r̂t(At , Ht) have a coefficient of

variation of 5.5%. Here we note that this instability of the
IPW does not mean that there are positivity violations in our
application (the maximum value of

∏τ
t=1 r̂t(At , Ht) is 97.7), but

rather that the weights are highly variable and so is the IPW
estimator. The distribution of the weights for the IPW estimator
is presented in Figure 4 in the supplementary materials.

Supplementary Materials

Web supplementary materials contain all theoretical results and additional
results for the simulation study and application.
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