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Background.  In generalized epidemic settings, strategies are needed to prioritize individuals at higher risk of human immuno-
deficiency virus (HIV) acquisition for prevention services. We used population-level HIV testing data from rural Kenya and Uganda 
to construct HIV risk scores and assessed their ability to identify seroconversions.

Methods.  During 2013–2017, >75% of residents in 16 communities in the SEARCH study were tested annually for HIV. In this 
population, we evaluated 3 strategies for using demographic factors to predict the 1-year risk of HIV seroconversion: membership 
in ≥1 known “risk group” (eg, having a spouse living with HIV), a “model-based” risk score constructed with logistic regression, and 
a “machine learning” risk score constructed with the Super Learner algorithm. We hypothesized machine learning would identify 
high-risk individuals more efficiently (fewer persons targeted for a fixed sensitivity) and with higher sensitivity (for a fixed number 
targeted) than either other approach.

Results.  A total of 75 558 persons contributed 166 723 person-years of follow-up; 519 seroconverted. Machine learning im-
proved efficiency. To achieve a fixed sensitivity of 50%, the risk-group strategy targeted 42% of the population, the model-based 
strategy targeted 27%, and machine learning targeted 18%. Machine learning also improved sensitivity. With an upper limit of 
45% targeted, the risk-group strategy correctly classified 58% of seroconversions, the model-based strategy 68%, and machine 
learning 78%.

Conclusions.  Machine learning improved classification of individuals at risk of HIV acquisition compared with a model-based 
approach or reliance on known risk groups and could inform targeting of prevention strategies in generalized epidemic settings.

Clinical Trials Registration.  NCT01864603.
Keywords.   clinical prediction rule; HIV risk score; HIV prevention; PrEP; SEARCH Study.

Despite rapid scale-up in diagnosis and access to antiretroviral 
therapy (ART), an estimated 800 000 new human immunodefi-
ciency virus (HIV) infections occurred in eastern and southern 
Africa in 2017 [1]. Identifying who remains at risk of HIV acqui-
sition is crucial to guiding the application of more intensive pre-
vention interventions such as preexposure prophylaxis (PrEP). 
In generalized epidemic settings, a focus on known risk groups, 
such as serodiscordant spouses and young women, can effec-
tively reach many high-risk individuals and align with guide-
lines for identifying persons “at substantial risk for HIV”[1–3]. 

This approach, however, may miss less well-recognized or easily 
described subgroups who face elevated risk [4] and may not ex-
pend resources most efficiently [5].

Self-assessment provides one means of identifying individ-
uals at elevated risk despite absence of a known risk factor. 
However, an individual’s risk perception can depend on their 
HIV-related knowledge [6] and may fail to capture unantici-
pated or uncontrolled exposures. Data-driven tools offer an al-
ternative and potentially complementary approach to efficiently 
and effectively identify persons who would most benefit from 
intensified prevention interventions (Figure 1).

In eastern and southern Africa, a number of HIV risk scores 
have been developed and validated to predict HIV seroconversion 
within known risk groups, including serodiscordant couples [7], 
African women [8, 9], and men-who-have-sex-with-men (MSM) 
[10, 11]. These risk scores were constructed using standard ap-
proaches for clinical prediction rules, which assign a point value 
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to each predictor based on regression model coefficients [12]. 
Machine learning, which uses computational and statistical al-
gorithms to flexibly learn complex relationships from data, might 
improve risk classification by relaxing the modeling assumptions 
made by standard approaches. Ensemble methods such as Super 
Learner are particularly promising due to their ability to combine 
multiple approaches, including regression models, known risk 
groups, and more flexible data-adaptive algorithms [13]. Despite 
its promise, however, the application of machine learning to pre-
dict HIV acquisition has been limited [14–18].

We used population-level HIV incidence data from 3 regions 
of rural Kenya and Uganda and applied Super Learner [13] to 
construct a machine learning risk score. We hypothesized that 
this machine learning risk score would classify future sero-
conversions as “high-risk” and eligible for intensified preven-
tion more efficiently (fewer persons targeted to achieve a fixed 
sensitivity) and with higher sensitivity (under a fixed number 
of persons targeted) compared with either a model-based risk 
score constructed using standard methods [7–12] or an ap-
proach based on known risk groups (eg, young women, having 
a spouse living with HIV).

METHODS

Study Setting and Population

HIV risk scores were developed and evaluated using data from 
16 communities in the intervention arm of the SEARCH Study, a 
cluster-randomized test-and-treat trial conducted in rural Uganda 
and Kenya in 2013–2017 [19]. Following a household census, 90% 
of community residents aged ≥15 years were tested at study base-
line using multidisease health fairs combined with home visits [20]. 

Baseline HIV prevalence varied by region: 4% in Uganda-East, 7% 
in Uganda-West, and 19% in Kenya [21]. Three subsequent rounds 
of repeat HIV testing reached 78%, 76%, and 82% of residents, in-
clusive of in-migrants and newly 15  year-olds. All persons with 
a negative HIV test followed by a repeat test 1 year later were in-
cluded in analyses, providing 3 annual incidence cohorts.

Measures

HIV serostatus was determined using country-standard rapid 
HIV antibody algorithms [20]. The following predictors were 
assessed with self-report at baseline and year 3: age, sex, mar-
ital status, education, occupation, mobility, relationship to the 
head of the household, alcohol use, family planning, and male 
circumcision (Supplementary Table 1). We assumed these fac-
tors were stable over a 1-year period and imputed interim (years 
1 and 2) values. Household predictors included socioeconomic 
status [20] and summaries of household HIV testing behavior 
and outcomes. Serodiscordant relationships and characteristics 
of partners living with HIV were determined by linking HIV 
testing data between heads of households and their spouses.

Risk Score Development

We generated 3 scores to predict the 1-year risk of HIV acquisi-
tion. First, we considered an approach based on belonging to a 
known “risk group”: women aged 15–24 years, individuals with 
spouses who were living with HIV, alcohol users, widow(er)s, and 
persons employed in transportation, bars, or fishing [1, 22–25].  
The score was calculated be summing the groups to which an 
individual belonged.

Second, we generated a “model-based” risk score using 
standard methods for constructing clinical prediction rules 
[7–12]. Specifically, we reduced the set of candidate predictors 
(Supplementary Table 1) based on univariate associations with 
the outcome (P < .05), applied forward and backward stepwise 
logistic regression to the remaining predictors, and normalized 
the fitted coefficients (divided by the smallest coefficient and 
rounded) to generate a point value for the final predictors.

Third, we used Super Learner to build a “machine learning” 
risk score. Super Learner is an ensemble method that uses in-
ternal sample-splitting to build a weighted combination of 
algorithm-specific predictions generated from a library of can-
didate algorithms (Supplementary Materials) [13]. Our library 
included penalized logistic regression, generalized additive 
models, main terms logistic regression using known risk fac-
tors, and stepwise logistic regression after screening based on 
univariate associations with the outcome. The weighted com-
bination was chosen using the negative log-likelihood loss and 
5-fold sample splitting, stratified on the individual.

Risk Score Evaluation

For the model-based and machine learning approaches, we con-
structed cross-validated risk scores to evaluate performance on 

Figure 1.  Schematic representation of a targeted prevention strategy with the 
goal of maximizing the intersection of the population offered intensified prevention 
(light gray) with the population at risk of seroconversion (medium-gray). Sensitivity 
is the proportion of individuals at high  risk who are correctly identified by the 
strategy: the number in the dark-gray intersection divided by the number in the 
medium-gray circle. The rate of positive predictions is the proportion of the popula-
tion targeted: the number in the light-gray circle divided by the total population size. 
The number needed to target (equal to 1/positive predictive value) is the number 
classified as high  risk per seroconversion identified: the number in the light-gray 
circle divided by the number in the dark-gray intersection. Abbreviation: HIV, human 
immunodeficiency virus.
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data not used in their development (Supplementary Figure 1).  
Specifically, individuals were partitioned into 5 mutually exclu-
sive and exhaustive “folds.” Data from 4/5 folds were used to 
derive the model-based and machine learning risk scores. The 
resulting algorithms were then applied to predict HIV serocon-
version among participants in the remaining fold. By rotating 
through the folds, we obtained cross-validated scores for each 
participant. We plotted receiver operating characteristic curves 
and estimated the areas under the curve (AUC).

Evaluation of Targeting Strategies

We used the cross-validated risk scores to evaluate alternative 
strategies for targeting intensified prevention. If an individual’s 
risk score was greater than or equal to a score-specific 
cutoff, we classified that individual as “high-risk.” First, we 
selected the minimum score-specific cutoff to achieve at least 
{50%,60%,70%,80%} sensitivity (proportion of seroconversions 
correctly classified as high-risk). For the selected cutoffs, we 
evaluated efficiency by comparing the resulting rate of positive 
predictions (proportion of the population flagged as high-risk) 
and number of persons targeted per seroconversion correctly 
classified (“number needed to target” [NNT]; Figure 1). Second, 
we selected the maximum score-specific cutoff that would not 
exceed a rate of positive predictions of {20%,30%,40%,45%}. 
Under these cutoffs, we calculated sensitivity and NNT.

We pooled across regions when selecting cutoffs and also 
selected region-specific cutoffs. We evaluated each strategy 
within strata defined by sex and age. Analyses were completed 
in R-v3.5.1 with the SuperLearner package [26].

RESULTS

Study Population

A total 75 558 persons who were followed for 166 723 person-
years (PY) had at least 1 negative HIV test with a repeat test 1 year 
later and were included in analyses (250 806 total tests). At base-
line, 39% of participants were aged 15–24 years, 44% were male, 
3% had a spouse living with HIV, and 15% used alcohol (Table 
1). A  total of 519 HIV seroconversions were observed (inci-
dence rate, 0.31/100 PY). There were 212 seroconversions among 
57 296 persons in the first year (0.37/100 PY), 158 seroconver-
sions among 57 284 persons in the second year (0.29/100 PY), 
and 149 seroconversions among 60 668 persons in the third year 
(0.27/100 PY).

AUC of Risk Scores

Machine learning more accurately ranked individuals who ac-
quired HIV as higher-risk than those who did not (AUC, 0.73; 
95% confidence interval [CI], 0.71–0.76; Supplementary Figure 
2) compared with both the model-based score (AUC, 0.70; 95% 
CI, 0.68–0.73, P = .03) and the risk group score (AUC, 0.59; 95% 
CI, 0.55–0.62, P < .001).

Efficiency for a Fixed Sensitivity

A risk group strategy targeting persons with at least 1 known 
risk factor would have fallen short of 60% sensitivity. For com-
parison, we therefore focus our discussion on achieving 50% 
sensitivity, while noting machine learning improved efficiency 
at all thresholds (Table 2).

To correctly classify at least 50% of seroconversions as high-
risk, a risk group strategy targeting persons with at least 1 known 
risk factor (score≥1) would have identified 42% of the pop-
ulation for intensified prevention (Figure 2). To achieve the 
same sensitivity, the model-based strategy would have targeted 
27% of the population and machine learning would have tar-
geted 18%. Machine learning provided relative efficiency im-
provements of 2.3 and 1.5 compared with the risk group and 
model-based approaches, respectively. Within age–sex strata, 
machine learning resulted in 2.6-times fewer women, 1.9-times 
fewer men, 3.5-times fewer younger adults, and 1.7-times fewer 
older adults targeted than the risk group approach. Compared 
with the model-based strategy, efficiency gains from machine 
learning within age–sex strata were smaller but still present. 
Overall and within strata, the NNT using machine learning was 
1.8- to 2.4-times lower than the risk group strategy and 1.3- to 
1.5-times lower than the model-based strategy (Supplementary 
Figure 3).

Machine learning also improved efficiency within each re-
gion (Supplementary Table 2). To correctly classify 50% of sero-
conversions as high-risk in Uganda-West, 43% of the regional 
population would be targeted by the risk group strategy, 34% 
by the model-based strategy, and 20% by machine learning 
(efficiency improvement, 1.7–2.1 from machine learning). To 
correctly classify half of seroconversions in Uganda-East, the 
risk group and model-based strategies would have targeted 
44% of the regional population and machine learning would 
have targeted 26% (efficiency improvement, 1.7 from machine 
learning). Finally, to correctly classify 50% of seroconversions 
in Kenya, 40% of the regional population would be targeted by 
the risk group strategy, 31% by the model-based strategy, and 
24% by machine learning (efficiency improvement, 1.3–1.7 
from machine learning).

When fixing the sensitivity within each region, machine 
learning also reduced the proportion of women and younger and 
older adults targeted compared with either of the other strategies 
(Supplementary Table 2). For example, across the 3 regions, 
51%–59% of younger adults would be targeted by the risk group 
strategy, 25%–36% by the model-based strategy, and 19%–22% 
by machine learning. Results varied for men. Machine learning 
resulted in 16% fewer men targeted than the risk group approach 
in Uganda-West and 7% fewer men targeted in Uganda-East, 
but equal proportions of men targeted in Kenya. Nonetheless, 
among men in each region, the NNT from machine learning was 
1.2- to 2.1-times lower than the risk group strategy and 1.2- to 
1.6-times lower than the model-based strategy.
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Sensitivity for a Fixed Proportion Targeted

A risk group strategy of targeting persons with at least 2 risk 
factors (score≥2) would have flagged 3% of the population as 
high-risk, but with limited sensitivity of 8%. For comparison, 
we focus on strategies with a rate of positive predictions that 
is ≤45%, corresponding to the proportion flagged as high-risk 
under a risk group strategy of targeting persons with at least 1 
risk factor (score≥1), while noting machine learning improved 
sensitivity at all thresholds (Table 2).

With the proportion targeted fixed at 45%, the risk group 
strategy would have covered 58% of seroconversions, the 
model-based strategy would have covered 68%, and machine 
learning would have covered 78% (Figure 3); machine learning 
thus provided 20% and 10% higher sensitivity than the risk 
group and model-based strategies, respectively. Compared with 

the risk group strategy, machine learning correctly classified 
16% more seroconversions among women, 28% more among 
men, and 30% more among older adults. Absolute gains in sen-
sitivity compared with the model-based strategy were smaller 
(8%–15%) but still present. Among younger adults, the model-
based strategy achieved 66% sensitivity, while the risk group 
strategy achieved 79% and machine learning achieved 81%.

Fixing the number targeted within each region, machine 
learning also correctly classified more region-specific sero-
conversions than either alternative (Supplementary Table 3). 
When targeting 45% of the population in Uganda-West, the 
risk group strategy covered 56% of regional seroconversions, 
the model-based strategy covered 60%, and machine learning 
covered 78% (sensitivity improvement, 18%–22% from ma-
chine learning). When targeting the same proportion of the 

Table 1.  Characteristics of 3 Annual Human Immunodeficiency Virus Incidence Cohorts 

Characteristic Year 0 to Year 1 Year 1 to Year 2 Year 2 to Year 3

 N = 57 296 (%) N = 57 284 (%) N = 60 668 (%)

Region    

  Uganda-East 21 451 (37) 22 062 (39) 22 514 (37)

  Uganda-West 18 853 (33) 17 897 (31) 20 065 (33)

  Kenya 16 992 (30) 17 325 (30) 18 089 (30)

Sex    

  Female 32 072 (56) 32 221 (56) 34 271 (56)

  Male 25 224 (44) 25 063 (44) 26 397 (44)

Age, y    

  15–24 22 320 (39) 21 956 (38) 22 631 (37)

  25–34 11 441 (20) 10 997 (19) 11 920 (20)

  35–44 8434 (15) 8625 (15) 9232 (15)

  45–54 6156 (11) 6236 (11) 6698 (11)

  55+ 8945 (16) 9470 (17) 10 187 (17)

Marital statusa    

  Single 16 902 (30) 14 257 (27) 15 247 (26)

  Married 33 395 (59) 32 732 (62) 36 305 (63)

  Widowed 4425 (8) 4384 (8) 4858 (8)

  Divorced, separated 1576 (3) 1489 (3) 1676 (3)

Educationb    

  Less than primary 38 966 (68) 40 540 (71) 38 074 (63)

  Primary completed 7836 (14) 7442 (13) 9328 (15)

  Some secondary or beyond 10 494 (18) 9302 (16) 13 266 (22)

Occupationc    

 Transportation 550 (1) 511 (1) 867 (1)

  Bar 124 (0) 116 (0) 94 (0)

  Fishing 959 (2) 933 (2) 908 (1)

Serodiscordant spoused 1011 (3) 1096 (3) 1177 (3)

Any alcohol usee 8165 (15) 7483 (15) 7109 (12)

Human immunodeficiency virus seroconversion by end 
of risk period

212 (0) 158 (0) 149 (0)

The cohorts consisted of individuals with a negative human immunodeficiency virus test and a repeat test 1 year later, measured between 2013 and 2017 in 16 communities in rural Kenya 
and Uganda. 
aMissing data on 998 (2%) at year 0, 4422 (8%) at year 1, and 2582 (4%) at year 2.
bMissing data on 90 (0%) at year 0, 124 (0%) at year 1, and 2600 (4%) at year 2.
cMissing data on 1002 (2%) at year 0, 4426 (8%) at year 1, and 2576 (4%) at year 2.
dMissing data on 21 520 (38%) at year 0, 23 028 (40%) at year 1, and 26 068 (43%) at year 2.
eMissing data on 4072 (7%) at year 0, 6411 (11%) at year 1, and 144 (0%) at year 2.
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population in Uganda-East, the risk group strategy correctly 
classified 54% of seroconversions, the model-based strategy 
correctly classified 64%, and machine learning correctly clas-
sified 68% (sensitivity improvement, 4%–14% from machine 
learning). When targeting 45% of the population in Kenya, the 
risk group strategy correctly classified 60% of seroconversions, 
the model-based strategy correctly classified 69%, and machine 
learning correctly classified 74% (sensitivity improvement, 
5%–14% from machine learning).

Within each region, machine learning also resulted in the 
highest sensitivity among women, men, and older adults 
(Supplementary Table 3). In Uganda-West, for example, 42% of 
seroconversions among older adults would be identified by the 
risk group strategy, 62% by the model-based strategy, and 78% 
by machine learning. The risk group strategy had the highest 
sensitivity among younger adults in each region but at the price 
of higher NNT: 807 in Uganda-East, 222 in Uganda-West, and 
156 in Kenya.

DISCUSSION

In this population-based study conducted in 3 generalized 
epidemic settings in rural East Africa, we used demographic 
data to build risk scores for HIV acquisition based on known 
risk groups; stepwise regression, a model-based approach; and 
machine learning. We compared strategies for targeting indi-
viduals for intensified prevention based on these risk scores 
and found that machine learning substantially improved effi-
ciency compared with the other strategies. When maintaining 

the same sensitivity, machine learning reduced the number of 
individuals who would have been targeted by 33% and 57% 
compared with the model-based and risk group approaches, 
respectively. Within age–sex subgroups, machine learning also 
reduced the number targeted by 25%–50% compared with the 
alternatives. Efficiency gains were seen for both the population 
as a whole (allowing for reallocation of prevention resources 
across regions) and within each region (offering more efficient 
allocation within-region).

Across regions, machine learning resulted in notable gains 
in sensitivity when controlling the rate of positive predictions. 
For a fixed global constraint on the number targeted, machine 
learning achieved 10% higher coverage of seroconversions than 
the model-based strategy and 20% higher coverage than the 
risk group strategy. Improvements in sensitivity were also ob-
served within region: machine learning improved coverage by 
4%–18% compared with the model-based strategy and by 14%–
22% compared with the risk group strategy. Coverage gains 
were also seen within most age–sex strata. However, the sensi-
tivity of machine learning among youth, while 10%–22% higher 
than the model-based strategy, was lower than the risk group 
strategy in all regions. Similar age-related challenges have been 
observed when applying the VOICE score for African women 
to other trials’ data [27–29]. Future work could consider a mod-
ified approach to ensure minimum coverage among key groups 
such as youth. Specifically, selecting age-specific cutoffs would 
have resulted in superior sensitivity from machine learning 
(Supplementary Table 4).

This work builds on existing HIV risk scores from eastern 
and southern Africa in several ways [4,7–11,27–30]. First, it 
provides evidence that data-driven tools can improve character-
ization of HIV seroconversion risk at a population-level in the 
setting of universal ART eligibility, the current standard of care 
[31], and high population-level viral suppression [21], likely to 
become more common as HIV testing coverage and ART access 
expand. In this context, population-based HIV risk stratifica-
tion may become both more challenging and more crucial for 
cost-effective targeting of services.

Second, we developed and evaluated risk scores using dem-
ographic predictors in a general East African population. Prior 
risk scores have largely focused on specific subpopulations 
(eg, African women, serodiscordant couples, MSM, and in-
dividuals who report recent sexual activity) [4,7–11,27–30]. 
Applying risk scores after screening may improve the spec-
ificity of risk classification but may also miss individuals at 
risk of HIV acquisition despite absence or underreporting of 
a known predictor. We were unable to directly compare our 
population-level risk scores with this approach because meas-
ures of sexual behavior and symptoms used by existing scores 
were unavailable. Interestingly, our machine learning score 
achieved similar performance despite reliance on demographic 
data (eg, when applied to other prevention trials, the VOICE 

Table 2.  Cross-Validated Efficiency, Defined as the Rate of Positive 
Predictions (Proportion of the Population Flagged as High Risk) to Achieve 
a Fixed Sensitivity for Correct Classification of Seroconversions (Top); and 
Cross-Validated Sensitivity That Would Have Been Achieved When Fixing 
the Rate of Positive Predictions (Bottom)

Rate of Positive Predictions, %

Needed to meet a minimum 
sensitivity, % Risk Groupa

Model-
based

Machine  
Learning

50 42 27 18

60 NA 39 26

70 NA 51 37

80 NA 63 48

 Sensitivity Achieved, %

Limiting the rate of positive 
predictions, % 

Risk Groupb Model-
based

Machine  
Learning

20 8 40 52

30 8 55 65

40 8 68 74

45 58 68 78

Abbreviation: NA, not applicable.
aA strategy to target all persons with at least 1 known risk factor (score ≥ 1) would have 
offered intensified prevention to 42% of the population; a lower threshold (score ≥ 0) is NA.
bA strategy to target all persons with at least 2 known risk factors (score ≥ 2) would have 
achieved 8% sensitivity, while a strategy to target all persons with at least 1 known risk 
factor (score ≥ 1) would have achieved 58% sensitivity.
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risk score for African women achieved AUCs of 0.56–0.70) 
[8,28,29]. Nonetheless, incorporation of sexual behavior and 
risk self-assessment might further improve the performance of 
the strategies considered.

Our results provide evidence of the utility of machine 
learning for constructing population-level HIV risk scores. 
Recent work among US clinic-based populations supports this 
finding. In particular, Krakower et al applied machine learning 
to electronic health records (EHRs) and found penalized re-
gression differentiated well between prevalent HIV cases and 
controls [17]. In a similar setting, Feller et  al applied natural 
language processing to unstructured clinical notes and iden-
tified keywords related to sexual orientation (eg, “msm”) and 
drug use (eg, “methamphetamine”), incorporation of which 
improved classification of prevalent HIV cases [15]. Most re-
cently, Marcus et al applied penalized regression to EHR data 
and demonstrated improved ability to predict incident HIV 
compared with risk group approaches based on MSM status and 
sexually transmitted infection positivity [18].

There are several limitations to our study. First, with the goal 
of predicting incident seroconversion over 1 year, our risk algo-
rithms were built and evaluated using data on individuals with 
at least 2 repeat HIV tests. While testing coverage was >75% 
annually, individuals not tested may have risk profiles that are 
distinct from those analyzed [21]. Second, the values of certain 

demographic factors were imputed during interim years. This im-
putation, however, should adversely impact the performance of 
all algorithms equally and thus not change their comparative per-
formance. Finally, our data on spousal discordance was limited to 
heads of households and their partners and thus was missing for 
many participants. This missingness, however, should affect all al-
gorithms equally, and, if available, all algorithms could be updated 
to include serodiscordance as assessed via targeted testing.

Open questions remain regarding the generalizability of risk 
scores. In a sensitivity analysis, the inclusion of community in-
dicators as candidate risk factors did not yield meaningful gains 
in performance, providing preliminary evidence of generaliz-
ability to other communities in these regions. However, risk 
score performance outside these regions, as well in the same 
regions as the epidemic evolves, requires further study.

Open questions also remain regarding the feasibility and ac-
ceptability of using machine learning to prioritize individuals 
for HIV prevention services. Preliminary data suggest imple-
mentation of a machine learning risk score is feasible in rural 
East Africa. During community-wide HIV testing in SEARCH 
(2016–2017), we screened 69  121 individuals not living with 
HIV and referred 7256 for PrEP based on a point-of-contact 
Super Learner risk score [14,16]. Other community-based or 
facility-based testing programs could incorporate machine 
learning in practice to identify high-risk individuals [17,18]. 
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Figure 2.  Cross-validated efficiency of each candidate targeting strategy, defined as the proportion of the population that would have been classified as high risk (rate of 
positive predictions) to achieve 50% sensitivity for correct classification of seroconversions.
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Figure 3.  Cross-validated sensitivity for correct classification of seroconversions that would have been achieved by targeting 45% of the overall population.

Going forward, multidisciplinary teams, including experts in 
data science, implementation science, behavioral science, social 
science, and costing, will be required to implement, evaluate, 
and update these approaches.

Improved data-driven HIV risk prediction provides one po-
tential means to prioritize individuals for intensified prevention 
services. The results of this study suggest that in generalized epi-
demic settings with varying HIV prevalence, the use of machine 
learning methods such as Super Learner may improve the iden-
tification of individuals at high  risk for HIV infection, a first 
step toward more efficient and effective approaches for targeted 
prevention delivery.

Supplementary Data
Supplementary materials are available at Clinical Infectious Diseases online. 
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