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Overview

• why ITS?
• when to use
• logic of test 
• practical considerations 
• one example
• extensions
• resources
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Why ITS

• Population is unit of interest

• Interruption has well-defined time of onset

• Exchangeability principle



When to use



When to use: phenomenon is complex
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When to use: phenomenon is complex*

Incidence of vaginal births after C-section, 1989 to 2007 
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Expected value after intervention is not 
mean of pre-intervention values

* Most population health outcomes are complex



When to use

• Patterns in outcome variable may include trend, seasonality 
and other autocorrelation “signatures”

• Failure to identify and control for autocorrelation in the pre-
intervention often leads to falsely attributing an “effect” to 
the intervention itself 
– or, leads to artificially precise standard errors

• “But . . . my outcome has no patterns”
– did you check?
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“Memory”



Logic of ITS

• Identify autocorrelation of outcome (Y) before intervention to 
derive statistically expected values of Y after intervention
– Counterfactual (comparison) is derived from history of Y

• earlier values of Y are used to remove patterns, so that 
expected value of residuals = 0 

• Intervention (X) may cause Y only if it predicts Y better than 
history of Y itself
– Granger-cause; conservative



Practical considerations

• >50 time points pre-intervention provides adequate power
• consistent spacing (e.g., monthly)
• know exact timing of intervention/policy
• theory leads to an a priori expectation of induction period

– Mental health, birth outcomes, health behaviors, stroke (vs. diabetes)

• Bonus: have an expectation about shape of response



Practical Considerations

• Time series vs. other approaches
– One observation per time point
– Sample size is duration of the series

• Crucial that data quality and collection 
methods are consistent throughout series
– also, assumes constant variance of “segments”



Example



Mental Health Services Act, CA

Tax on 40,000 millionaires in CA

Redistributed $$ to county 
mental health dep’ts

Targets persons with SMI

$27 Billion since 2005

Counties had to apply for funds



Did MHSA reduce psychiatric ED visits?
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1. ID patterns; derive expected values
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2. Insert controls (confounders)

• Unemployment Rate

• Precipitation

• Hospitals with emergency stations



3. Specify induction period

• Start with 5 to 12 months post-MHSA funds
– based on discussions with LA County
– Ideally, specify before you peek at data

• Then, examine change in mean



4. Insert MHSA variable

• Binary (1/0) at time 68; lags of 5 through 12 months

• Estimate its association with psychiatric ED visits
– ARIMA regression framework



5. Inspect residuals for patterns

• Must examine ACF, PACF

• If there is residual 
autocorrelation, re-specify 
the error term

• If there is none, interpret
coefficient (SE)



Did receipt of funds reduce ED visits?
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Yes, but only for a few months



Extensions



Extensions: Control Series

• Insert a control series unaffected by intervention
– Comparison place, or comparison pop’n w/in place

• analagous to a falsification test

– Benefit: minimizes « history » rival of broader changes
– Confounder would have to

• be specific to your study population
• be unpatterned
• occur only after the intervention but not be caused by it

• Important that control is theorized to be unaffected!



Extensions: Combined Approach

• If you want individual-level inference
– augment individual-level data with a time propensity

• Time propensity is derived from a best-fitted value of 
the outcome, conditional ONLY on time
– Often much more efficient than year & month indicators
– Better captures the nuance of patterned Y

• Use time propensity as a covariate in an individual-
based approach



Pitfalls to avoid

• “My outcome has no temporal patterns”
– Did you check?

• “Year, month indicators remove all patterns in outcome”
– Inspection of ACF and PACF is only way to diagnose



Pitfalls to avoid

• “I can pre-specify patterns without empirical 
examination (e.g., cubic spline)”
– Could work, but double-check ACF and PACF

• “I have an exogenous shock; I can compare means pre-
and post- shock”
– Is it truly exogenous? Most policies not randomly assigned in place & time
– Patterns, especially preceding shock, are most insidious & require control



Summary

• If interested in
– acute ecological exposure

AND

– data availability permit

ITS represents an appealing option, consistent 
with experimental logic, that minimizes bias 
due to confounding



Resources

• ARIMA
– Flexible in terms of applications, and model choice
– Strong outlier detection routines
– Is available in R, SAS, SCA* (No ACF/PACF output in STATA)
– No a priori assumptions about autocorrelation

• Others (e.g., spline, sine wave, linear regression)
– Makes assumptions about functional form 

• Must be verified by analyst

– Can capture autocorrelation for some Y’s
* my preference



Resources

• References:
– Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting and 

Control 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.
– Chatfield C. The Analysis of Time Series: An Introduction, 6th Edn. 2016
– For time propensity:  Catalano R, Ahern J, Bruckner T.  Estimating the health effects of 

macrosocial shocks: a collaborative approach. In: Galea, S. (ed.). Macrosocial 
Determinants of Health. Springer; New York, 2008.

– https://doi.org/10.1093/oxfordjournals.aje.a114712

• Software Packages
– SCA: http://www.scausa.com/scatsa.php
– SAS: Proc ARIMA https://support.sas.com/rnd/app/ets/procedures/ets_arima.html
– R:  http://a-little-book-of-r-for-time-

series.readthedocs.io/en/latest/src/timeseries.html

• Practical examples/papers:
– http://faculty.sites.uci.edu/bruckner/
– search “UCLA Stats ARIMA”
– Tutorial in Intl J Epid: https://doi.org/10.1093/ije/dyw098



Thank you

tim.bruckner@uci.edu

http://faculty.sites.uci.edu/bruckner/
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