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Marginal Structural Models as a Tool for Standardization

Tosiya Sato and Yutaka Matsuyama

Abstract: In this article, we show the general relation between
standardization methods and marginal structural models. Standard-
ization has been recognized as a method to control confounding and
to estimate causal parameters of interest. Because standardization
requires stratification by confounders, the sparse-data problem will
occur when stratified by many confounders and one then might have
an unstable estimator. A new class of causal models called marginal
structural models has recently been proposed. In marginal structural
models, the parameters are consistently estimated by the inverse-
probability-of-treatment weighting method. Marginal structural
models give a nonparametric standardization using the total group
(exposed and unexposed) as the standard. In epidemiologic analysis,
it is also important to know the change in the average risk of the
exposed (or the unexposed) subgroup produced by exposure, which
corresponds to the exposed (or the unexposed) group as the standard.
We propose modifications of the weights in the marginal structural
models, which give the nonparametric estimation of standardized
parameters. With the proposed weights, we can use the marginal
structural models as a useful tool for the nonparametric multivariate
standardization.

Key Words: causal models, confounding, epidemiologic methods,
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tandardization methods have been used in epidemiology
for a long time."? The related idea of calculating the
expected number of deaths goes back to 18th century actu-
arial mathematicians.® Standardization methods are used to
control confounding, and one can estimate causal parameters
of interest through standardization.*” Standardized estimators,
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such as the standardized mortality/morbidity ratio (SMR), are
calculated by stratification on a set of confounding factors.

When the number of confounding factors used in strat-
ification is increased, the data become sparse. In that case,
estimated standardized parameters tend to be unstable. To
alleviate this lack of stability, parametric model-based stan-
dardization methods have been proposed.®® These methods
depend heavily on the correct specification of the parametric
model forms, which are usually unknown in epidemiologic
applications.

Recently, Robins and colleagues'®!'! have proposed a
new class of causal models called marginal structural models.
Their weighted analysis gives an asymptotically unbiased
estimate of the causal parameter of interest with the inverse of
the conditional probability of receiving the subject’s own
exposure or treatment as a weight. As given in Appendix 1 by
Robins et al.,'® in a simple stratified point exposure analysis,
their estimator is identical to the standardized estimator with
the total group as the standard population. Hence, the mar-
ginal structural model is interpretable as a nonparametric
multivariate standardization method.

In this article, we propose to ‘use different sets of
weights in the marginal structural models. The proposed
approach gives the general standardization framework in the
context of the marginal structural models.

Methods of Standardization

Suppose the data are stratified by combinations of
multiple confounding factors or a propensity score.>'? Table
1 gives the data layout in the kth stratum. The second row (x,,
;) denotes pairs of the number of outcome events (eg,
deaths) among the exposed and the unexposed. The last row
(n, m;) denotes pairs of the exposed and the unexposed
subjects in the risk ratio estimation, or pairs of the exposed
and the unexposed person-time denominators in the rate ratio
estimation.

To illustrate standardization methods, we use an exam-
ple of the effect of tamoxifen use (exposed: TAM = 1,
unexposed: TAM = 0) on the recurrence of breast cancer
(recurrence: RECUR = 1, no recurrence: RECUR = 0).
Detailed multivariate person-time analysis is given in a later
section. Table 2 shows the crude data and the data stratified
by lymph node metastasis at surgery (positive: LYM = 1,
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In the example in Table 2, SMR is calculated by:

TABLE 1. Notation for the kth Stratum
E d U d
xpose nexpose 368 + 96
SMR = —
Outcome Events Xp Yk 253 | = 171
Denominator ny, my 1215 X — F1334 X ——
760 1592

negative: LYM = 0). No effect of tamoxifen was observed in
the crude data (the crude risk ratio is 1.01). However, possi-
ble protective effects and effect-measure modification were
observed in the stratified data (the stratum-specific risk ratios
are 0.91 and 0.67, respectively).

When the target population of the study is the ex-
posed group and one needs to summarize the overall effect
of exposure in the ratio scale, the standardized mortality/
morbidity ratio (SMR) is such a measure, which is
given by:

E ok

SMR = ——.
E Vi

n, —

I3 "mk

The numerator of SMR can be interpreted as the number of
deaths (or events) in the exposed group when the exposed
group was actually exposed, which is identical to the ob-
served number of deaths. In contrast, the denominator can be
interpreted as the expected number of deaths in the exposed
group if the exposed group had not been exposed.*° Note that
this expectation is not the null (no effect) expectation, which
is given by %, nit,/N,, where t, = x; + y, and N, = n; + my.

368 + 96 464

= = = 0.85.
404.5 + 1433  547.8

The SMR is interpreted as the proportionate change in risk (or
rate) of the exposed group produced by exposure. In the
calculation of SMR, the exposed group is used as the standard
population. This is also known as the indirect standardization.
Other choices of target population that are commonly used in
epidemiologic studies are the unexposed group and the total
group (combining the exposed and the unexposed groups).'?

When the unexposed group is the target population and
is chosen as the standard population, the standardized risk (or
rate) ratio in the unexposed is given by:

Xk

Ekmk —

Ny

SRRy = —.
E,)’k

This is known as the direct standardization. In our example,
it is calculated as:

368 96
760 X —— + 1592 X ——
1215 1334

SRR =
It is instead the counterfactual number of deaths as if the ! 253 + 171
exposed had not been exposed, because in the kth stratum we
could substitute y,/m,; for the counterfactual disease fre- 344.8

quency in the exposed when confounding is removed by

230.2 + 114.6

3 . e = = = 0.81.
stratification. 253 + 171 424
TABLE 2. Crude and Stratified Count Data of the Tamoxifen Use and the Recurrence of Breast Cancer

Crude Data LYM =1 LYM =0
TAM =1 TAM = 0 TAM =1 TAM = 0 TAM =1 TAM = 0

RECUR =1 464 424 368 253 96 171
Total no. 2549 2352 1215 760 1334 1592
Risk ratio 1.01 091 0.67

LYM = 1 (positive for lymph node metastasis at surgery), 0 (negative); TAM = 1 (exposed to tamoxifen), 0 (unexposed); RECUR = 1 (recurrence of
breast cancer).
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SRRy, is interpreted as the proportionate change in the risk (or
rate) that would have occurred in the unexposed group had
they been exposed.

When the total group (combining the exposed and the
unexposed) is the target population, the standardized risk (or
rate) ratio in the total group,

Xk
DN —
ny
SRRy =,
Y
DN —
my
is calculated as:
368 96
1975 X —— 4+ 2926 X ——
1215 1334
SRR, =
253 171
1975 X — + 2926 X ——
760 1592
598.2 + 210.6 808.8
0.83

T 6575+ 3143 9718

SRR+ is interpreted as the proportionate change in risk (or
rate) in the total group under complete exposure and complete
nonexposure.

still valid even when there is effect-measure modification!
other words, stratum specific ratios are heterogeneous.

The interpretations of these standardized parameters E%

Marginal Structural Models and
Standardization

We explain the marginal structural models in the con-
text of causal risk ratio estimation. Application to the esti-
mation of other effect measures is straightforward.' In the
estimation of the effect of a dichotomous exposure £ (1:
exposed, 0: unexposed) on a dichotomous outcome D (1:
event occurred, 0: no event), we consider the contrast of the
following potentially counterfactual probabilities:

P(D = llset E = 1) and P(D = 1lset E = 0)

for the probability of D = 1 if everyone in the target
population had been exposed (“set £ = 1) and if everyone in
the target population had not been exposed (“set £ = 0).%7
Note that the counterfactual probability, P(D = l|set £ = e),
can be different from the observed probability, P(D = 1|E =
e), because the latter refers to a subset of population members
with £ = e, whereas the former refers to all population
members.
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In the marginal structural models, the marginal distri-
bution of the counterfactual probabilities is modeled as:

log P(D=llsetE=¢) = o + e, (1)

where exp(e;) is the causal risk ratio. The corresponding log-
linear model for the observed probability can be written as:

log P(D=1E=¢) = 6, + Oie, 2)

where exp(6,) is the crude risk ratio. This is an association
model. Because this model is for the observed data, asymp-
totically unbiased estimates for the association parameters 6,
and 0, are obtained through standard statistical software.
However, the association parameter 6; will differ from the
causal parameter «; except when exposure is unconfounded.

Robins et al.'® have proposed a weighted analysis
procedure for this association model, which in turn gives
unbiased estimates of causal parameter «,. First, we assume
that we have no unmeasured confounders given data on
measured confounders Z. Next, we assign a weight wy; to
each subject i which is equal to the inverse of the conditional
probability of receiving the subject’s own exposure e; condi-
tional on the subject’s confounder information z, P(E|Z).
With these weights, we perform the weighted analysis of the
association model. Because the propensity score is defined as
the conditional probability of receiving exposure, P(E = 1|Z
= z,),> the weights for the exposed subjects are the inverse of
P(E = 1|Z = z,) and those for the unexposed subjects the
inverse of P(E = 0Z = z;) = 1 — P(E = 1|Z = z;). The
resultant estimator is called the inverse probability of treat-
ment weighted (IPTW) estimator.

To see the relation between the standardization with the
total group as the standard and the marginal structural model,
we write SRR as:

Xi ny 3
Eka; Ekxk ﬁk

k

SRR, = = e
Vi my
E Ni ; EWk(N)

k

In the simple stratified analysis, the conditional probability of
receiving exposure for subjects in the kth stratum is n,/N,,
and hence the conditional probability of receiving nonexpo-
sure is 1 — n/N,, = m;/N,. It is obvious that the standardized
risk ratio with the total group as the standard, SRR, is
identical to the IPTW estimator in the marginal structural
model (see Appendix 1).

Table 3 displays this process when we applied the
IPTW method to the stratified data given in Table 2. Table 3
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TABLE 3. Inverse Probability of Treatment Weights wy, SMR Weights wg, and Composition of Pseudopopulation
Observed Pseudo No. Pseudo No.
LYM TAM RECUR No. P(E|Z) Wy Total Wi Exposed
1 1 1 368 0.615 1.63 598.2 1 368
1 1 0 847 0.615 1.63 1376.8 1 847
1 0 1 253 0.385 2.60 657.5 1.60 404.5
1 0 0 507 0.385 2.60 1317.5 1.60 810.5
0 1 1 96 0.456 2.19 210.6 1 96
0 1 0 1238 0.456 2.19 27154 1 1238
0 0 1 171 0.544 1.84 314.3 0.84 143.3
0 0 0 1421 0.544 1.84 2611.7 0.84 1190.7

LYM = 1 (positive for lymph node metastasis at surgery), 0 (negative); TAM = 1 (exposed to tamoxifen), 0 (unexposed); RECUR = 1 (recurrence of

breast cancer), 0 (no recurrence).

gives the observed number of women with each of the
possible combinations of lymph node metastasis (LYM),
tamoxifen use (TAM), and recurrence of breast cancer (RE-
CUR) as well as the IPT weights wp = 1/P(E = e|Z = z). For
example, P(TAM = 1|[LYM = 1) is calculated in the LYM =
1 stratum as the total number of tamoxifen-used (exposed)
women (1215) divided by the total number of women (1975)
which yields 0.615. Then, the IPT weights in the LYM =
1 stratum are 1.63 = 1/0.615 for the exposed women and
2.60 = 1/(1 — 0.615) = 1/0.385 for the unexposed women.
The column “Pseudo No. Total” represents the number of
women in the weighted pseudo-population for each combi-
nation of (LYM, TAM, RECUR). Table 4 displays the crude
data from the pseudo-population created by the IPT weights.
The crude risk ratio is 0.83, which is identical to the SRR.

We can interpret the marginal structural models asso-
ciated with the IPTW estimator as a nonparametric multivar-
iate extension of the standardization method with the total
group as the standard.

Proposed Weights

Although the IPTW estimator is useful for estimating
the population intervention effects, the standardization
method with either the exposed group or the unexposed group
as the standard is also useful in epidemiologic applications.
We show that with the modified weights, we obtain the

TABLE 4. Crude Data From the Pseudopopulation Created
by the Inverse Probability of Treatment Weights

Exposed Unexposed
Recurrence 808.8 971.8
No. of women 4901 4901

Crude risk ratio = 0.83

© 2003 Lippincott Williams & Wilkins

extensions of SMR or SRR, in the marginal structural models.
Similar to SRRy, SMR can be rewritten as:

S
2kx" Eka ﬁk ﬁk

SMR = =

Vi N my 71”1('
SRS

m, NJ N,

The weights implicitly used in SMR can be interpreted as the
inverse of the conditional probability of receiving the sub-
ject’s own exposure multiplied by the conditional probability
of receiving exposure regardless of the subject’s actual ex-
posure status (see Appendix 1). This leads to a new weight
for the ith subject:

PE=1Z=z)
Wg;i = . 3)
PE=¢lZ=z)

We call this the SMR weight. In the SMR weight, the
denominator works to control confounding in the same way
as in the inverse probability of treatment weights; the numer-
ator reweights the pseudo-population to give it the distribu-
tion of covariates in the target population (here, the exposed).

The weighted analysis of the association model (2) with
new weights (3) gives unbiased estimates of the parameters in
the following marginal structural model:

log P(D = l|setE = e, E=1) = B, + Be,

where “set £ = e, E = 1” means what would have occurred
in the exposed group had the exposed group taken the
exposure e. The resultant estimator for exp(6;), which is

683
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TABLE 5. Crude Data from the Pseudopopulation Created
by the SMR Weights

TABLE 7. Adjuvant Tamoxifen Use and Recurrence of
Breast Cancer

Exposed Unexposed Exposed Unexposed
Recurrence 464 547.8 Recurrence 464 424
No. of women 2549 2549 Women-years 17228 17461

Crude risk ratio = 0.85

Estimated rate ratio = 1.11 (95% confidence interval = 0.97-1.27)

consistent with causal parameter exp(f3;), has the interpreta-
tion as a nonparametric multivariate extension of the stan-
dardized mortality ratio. For the exposed subjects the weight
wg,; 1s always 1 and for the unexposed subjects it is the
conditional exposure odds. Table 3 also displays the SMR
weighting scheme. The SMR weight wy in the LYM = 1
stratum is calculated as the total number of exposed women
(1215) divided by the total number of unexposed women
(760), which yields 1.60. The last column, “Pseudo No.
Exposed,” represents the number of women in the SMR-
weighted pseudo-population. Table 5 displays the crude data
from the pseudo-population created by the SMR weights. The
crude risk ratio is 0.85, which is identical to SMR.

Parallel arguments give the extension of the standard-
ization method with the unexposed group as the standard. The
marginal structural model can be written as:

log P(D = 1[setE = e, E = 0) = v, + v¢,

and we have unbiased estimates of (vy,, y,) by the weighted
analysis of the association model (2) with weights

P(E=0Z=z)
= )

WUI - .
P(E=¢lZ=1z)

In Table 6, a summary of different sets of weights is
given when we use the logistic model

logit P(E = 1|Z = z,) = X’z

TABLE 6. Weights Used in Marginal Structural Models With
Different Standard Populations When Propensity Scores are
Estimated by the Logistic Model: logit P(E = 1[Z = z) = \'z;

Standard

Population Exposed Unexposed
Total 1 + exp(—A'z) 1 + exp(A'z,)
Exposed 1 exp(f\'zi)
Unexposed exp(f)A\'z,.) 1

A are corresponding maximum likelihood estimates to A.

in the estimation of propensity scores. Here we include a
constant 1 in z; so that the logistic model can contain the
intercept.

Tamoxifen Use and Recurrence of Breast
Cancer

Table 7 shows crude person-time data from an obser-
vational study of the effect of postoperative tamoxifen on the
recurrence of breast cancer.'* The study subjects were 6148
women who had been diagnosed with unilateral primary
breast cancer and who had received surgical treatment be-
tween 1982 and 1990 at 9 institutions in Japan. The study was
initiated in 1995 and the end of follow up was March 1996.
Information on each patient was retrospectively obtained
from medical records or a prospectively compiled computer
database at each institution. Among 6148 women, informa-
tion on recurrence was obtained for 4901 women shown in
Table 7 as well as Table 2. The crude rate ratio was 1.11
with a 95% confidence interval of 0.97-1.27. There was no
protective effect of adjuvant tamoxifen use on the recur-
rence of breast cancer. However, because the exposure to
adjuvant tamoxifen use was not randomized, the crude
results might have been confounded as in the previous
risk-ratio analyses.

We conducted weighted Poisson regression analysis'
in which the recurrence rate » was modeled as:

log r = wy, + w,e 5)
with the estimated SMR weights Wy, and where e is the

exposure indicator (1, exposed to tamoxifen; 0, unexposed).
The propensity score for each subject i was estimated by the

TABLE 8. Crude Data From the Pseudopopulation Created
by the SMR Weighting

Exposed Unexposed
Recurrence 464 554.0
Women-years 17228 18303.6

Estimated rate ratio = 0.89
(Robust 95% confidence interval = 0.78-1.02)

684
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logistic model, providing the estimated SMR weights. We
chose the following 4 covariates as confounding factors: age
at surgery, stage of breast cancer, lymph node metastasis, and
menopausal status. These variables were included in the
logistic model. Table 8 shows the crude data from the
pseudo-population created by the SMR weighting. The crude
rate ratio in Table 8 is an unbiased estimate of the causal rate
ratio, provided that there were no un ed confounders
after controlling for these 4 covalriatesr.ng)r

We can fit this weighted Poisson regression model using
Proc Genmod in SAS (version 8.2, SAS Institute Inc, Cary, NC).
The logarithm of each observed person-year is included as the
offset variable in the option of “model” statement, and each
estimated weight is specified in the “weight (or scwgt)” state-
ment. The robust variance estimate can be obtained by specify-
ing the “repeated” statement with the patient identification vari-
able (ID) and the independent working correlation matrix
(“repeated subject = ID/type = ind”). SAS code for the analysis
of this example is given in Appendix 2. Estimated rate ratio was
0.89 with a robust 95% confidence interval of 0.78-1.02. Com-
pared with the crude analysis given in Table 7, the adjusted
analysis gave a remarkable to show the protective effect of
adjuvant tamoxifen use.

In the calculation of a confidence interval, we used the
robust variance estimate. It provides a conservative confidence
interval for w, which is guaranteed to cover the true w at least
95% of the time in large samples.'®!® In the weighted analysis,
the fitted association models (2) or (5) assume risk or rate
homogeneity within the same exposure subgroup. However, in
the definition of the causal risk (rate) ratio, we need not assume
such homogeneity. Thus, the variance functions of the fitted
association models are misspecified, and hence the model-based
variance estimate is not valid. For example, the variance esti-
mate of log SMR from the stratified data given in Table 2 is
0.0034, whereas the model-based and the robust variance esti-
mates of the SMR-weighted @1 are 0.0032 and 0.0037, respec-
tively.

We conducted the usual Poisson regression analysis
adjusted by the same 4 covariates. The estimated constant
rate ratio is 0.87 with a 95% confidence interval of 0.77-1.00.
Because possible effect-measure modification was antici-
pated, the interaction term between tamoxifen use and lymph
node metastasis was added to the previous model. The esti-
mated rate ratios with and without lymph node metastasis are
0.95 and 0.72; for the interaction term, P = 0.06. With this
effect-measure modification, we need to have some popula-
tion-averaged rate ratio estimator. The IPTW estimator pro-
posed by Robins and colleagues'®!! is one such measure
when the target population is the total group, whereas the
SMR-weighted estimator is also such a measure when the
target population is the exposed subgroup.

Standardization using marginal structural models is
based on differences in the baseline distribution of confound-

© 2003 Lippincott Williams & Wilkins

S

ers. Therefore, it entirely avoids the problem, noted by
Greenland,'® of adjustment by person-time, which might be
considered an outcome variable in the usual standardization
approaches for stratified person-time data.

DISCUSSION

The marginal structural models with the inverse prob-
ability of treatment weights give the nonparametric multivar-
iate extension of the standardization method with the total
group as the standard population. We have shown that other
choices of weights give the extension of the standardization
method with other groups as the standard. All the weights can
be calculated using the estimation of the propensity scores
(Table 6). We primarily considered the estimation of ratio
measures in the previous sections. It is straightforward to
apply the proposed weights to the estimation of difference
measures.'® Marginal structural models with various sets of
weights can be used as a useful tool for the standardization
methods, depending on the appropriate choice of target pop-
ulation.

Appendix 1

Under the assumption of no unmeasured confounder,
the counterfactual probability of any target population, P(D
= l|set E = e, target population), is a weighted average of
the stratum-specific risks with weights proportional to the
distributions of Z in the target population;

P(D = l|set E = e, target population) =
EZP(D = l|E = e,Z = z) P(Z = z|target population),

where the sum is over the possible values of Z.°> Simple
algebra gives

EZP(D = 1|E = e,Z = z) P(Z = Z|target population)

PD=1E=eZ=2)
‘PE=elZ=2P(Z=2)

X P(Z = z|target population)

P(D=1,E=eZ=2z)

z

PE=eZ=2)
P(Z = z|target population)
P(Z =2)

>
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where P(Z = z) is the distributions of Z in the entire study
(total) population. The target population might sometimes be
completely external.

When the total population is the target population,
P(Z = z|target population) = P(Z = z) and we have

PD=1E=eZ=12)
P(E = e|Z =2)

P(D = l|setE = ¢) = >,

This leads to the inverse probability of treatment weighting.
Similarly, when the exposed group is the target population,
P(Z = z| target population) = P(Z = z|[E = 1) and

P(D=1|set E=e,E=1)

1 PE=1Z=z

a2 ==y

The last term in the right-hand side is the SMR weights
given in the text. When the unexposed group is the target
population, P(Z = z | target population) = P(Z = z|[E = 0)
and

P(D = 1|setE =eE=0)
P(E=0|Z=2)

> PD= ez = Z)iP(E —dz=2

T P(E=0)

Appendix 2

In this appendix, we provide SAS code to obtain the
nonparametric multivariate extension of SMR described in
the text. The following code is organized as follows. First, we
use Proc Logistic to fit the logistic model in the estimation of
propensity scores. Second, we use a SAS data step to calcu-
late the proposed SMR weights for each subject from the
estimated propensity scores of previous logistic model. Last,
we use Proc Genmod to fit the weighted Poisson regression
model that estimates the causal rate ratio.

The data file (SMR1) contains 1 record per woman. In
the following code, the variable “ID” is the patient identifi-
cation number and the variable “TAM” is a binary variable
indicating whether a patient was exposed (TAM = 1) or
unexposed (TAM = 0). The variables “AGE,” “STAGE,”
“LYM,” and “MENO” are age at surgery, stage of breast
cancer, lymph node metastasis, and menopausal status, re-
spectively. The variable “RECUR” is the binary outcome of
recurrence. The variable “LOGPT” is the logarithm of ob-
served person-times for each subject.

686

/* Estimation of Propensity Scores */
proc logistic data=SMRI;
model TAM=AGE STAGE LYM MENO;
output out=PRED p=P1I;
run;
/* Calculation of the SMR weights */
data SMR2;
set PRED;
PO=1-PI;
ODDS=P1/P0;
if TAM=1 then WEIGHT=1,;
else WEIGHT=0DDS;
run;
/* Weighted analysis */
proc genmod data=SMR2;
class ID;
model RECUR=TAM
/offset=LOGPT dist=poisson link=log;
weight WEIGHT;
repeated sub=ID / type=ind;
estimate ‘Beta” TAM 1 / exp;
run;
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