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In observational studies with exposures or treatments that
vary over time, standard approaches for adjustment of con-
founding are biased when there exist time-dependent con-
founders that are also affected by previous treatment. This
paper introduces marginal structural models, a new class of

causal models that allow for improved adjustment of con-
founding in those situations. The parameters of a marginal
structural model can be consistently estimated using a new
class of estimators, the inverse-probability-of-treatment
weighted estimators. (Epidemiology 2000;11:550 –560)
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Marginal structural models (MSMs) are a new class of
causal models for the estimation, from observational
data, of the causal effect of a time-dependent exposure in
the presence of time-dependent covariates that may be
simultaneously confounders and intermediate vari-
ables.1–3 The parameters of a MSM can be consistently
estimated using a new class of estimators: the inverse-
probability-of-treatment weighted (IPTW) estimators.
MSMs are an alternative to structural nested models
(SNMs), the parameters of which are estimated through
the method of g-estimation.4–6

The usual approach to the estimation of the effect of a
time-varying exposure or treatment has been to model the
probability of disease as a function of past exposure and past
confounder history, using analytic methods such as strati-
fied analysis and its parametric analogs (for example, logis-
tic or proportional hazards regression). We will show in
sections 4 and 7.1 that these standard approaches may be
biased, whether or not one further adjusts for past con-
founder history in the analysis, when (1) there exists a
time-dependent covariate that is a risk factor for, or pre-
dictor of, the event of interest and also predicts subsequent
exposure, and (2) past exposure history predicts subsequent
level of the covariate. We refer to covariates satisfying
condition 1 as time-dependent confounders. Conditions 1
and 2 will be true in many observational studies, particu-
larly those in which there is confounding by indication. For

example, in a study of the effect of zidovudine (AZT)
treatment on mortality among human immunodeficiency
virus (HIV)-infected subjects, the time-dependent covari-
ate CD4 lymphocyte count is both an independent predic-
tor of survival and initiation of therapy with AZT and is
itself influenced by prior AZT treatment. In a study of the
effect of obesity on mortality, the development of clinical
cardiac or respiratory disease is an independent predictor of
both mortality and subsequent weight loss and is influenced
by prior weight gain. Conditions 1 and 2 will always hold
when there are time-dependent covariates that are simul-
taneously confounders and intermediate variables. A more
detailed description of the bias of standard methods, as well
as several additional epidemiologic examples of time-de-
pendent confounding, has been presented elsewhere.5,7

1. Time-Dependent Confounding
Consider a follow-up study of HIV-infected patients. Let
Ak be the dose of the treatment or exposure of interest,
say AZT, on the kth day since start of follow-up. Let Y be
a dichotomous outcome of interest (for example, Y 5 1
if HIV RNA is not detectable in the blood and is 0
otherwise) measured at end of follow-up on day K 1 1.
Our goal is to estimate the causal effect of the time-
dependent treatment Ak on the outcome Y.

Figure 1 is a causal graph that represents our study with
K 5 1. A causal graph is a directed acyclic graph in which
the vertices (nodes) of the graph represent variables and
the directed edges (arrows) represent direct causal effects.8
In Figure 1, Lk represents the value on day k of the vector
of all measured risk factors for the outcome, such as age,
CD4 lymphocyte count, white blood count (WBC), he-
matocrit, diagnosis of acquired immunodeficiency syn-
drome (AIDS), and the presence or absence of various
symptoms or opportunistic infections such as oral candidi-
asis. Similarly, Uk represents the value on day k of all
unmeasured causal risk factors for Y. Figure 1, b, differs from
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Figure 1, a, only in that the arrows from the unmeasured
causal risk factors into the treatment variables have been
removed. When, as in Figure 1, b, there is no arrow from
unmeasured causal risk factors into treatment variables, we
say that there are no unmeasured confounders given data
on the measured confounders Lk.9,10 Figure 1, c, differs from
Figure 1, a and b, in that none of the risk factors for Y
(measured or unmeasured) has arrows into any treatment
variable. Note, however, that earlier treatment A0 can
causally affect later treatment A1. When, as in Figure 1, c,
there is no arrow from any (nontreatment) risk factor into
any treatment variable, there is no confounding by either
measured or unmeasured factors, in which case we say that
treatment is unconfounded.9,10

The distinctions drawn above apply equally to more
familiar point-treatment studies in which the treatment
is not time-dependent. As indicated in Figure 2, a point-
treatment study is a special case of the general set-up in
which K 5 0. Figure 2, a–c, contains the analogs of
Figure 1, a–c, for a point-treatment study.

As in any observational study, we cannot determine
from the observed data on the Lk, Ak, and Y whether
there is confounding by unmeasured risk factors. We can
only hope that whatever residual confounding there may
be due to the Uk is small. Under the untestable assump-
tion that there is no unmeasured confounding given the
Lk, we can, however, empirically test from the data
whether treatment is unconfounded. Specifically, a suf-
ficient condition for treatment to be unconfounded is
that, at each time k, among subjects with the same past
treatment history A0, . . ., Ak21, the treatment Ak is

unassociated with the past history of measured covari-
ates L0, . . ., Lk.9–11 For example, in our point-treatment
study, treatment will be unconfounded if A0 is unasso-
ciated with L0.

2. Counterfactuals in Point-Treatment Studies
We begin with a review of how one would estimate the
effect of A0 on Y in the point-treatment study of Figure
2. Suppose treatment A0 is dichotomous; suppose further
that Figure 2, c, is the true causal graph, that is, that
neither measured nor unmeasured covariates confound
the relation between treatment and the outcome. Then
the crude risk difference, risk ratio, and odds ratio each
measure the causal effect of the treatment A0 on the
outcome Y, although on different scales. The crude risk
difference is cRD 5 pr[Y 5 1uA0 5 1] 2 pr[Y 5
1uA0 5 0], the crude risk ratio is cRR 5 pr[Y 5
1uA0 5 1]/pr[Y 5 1uA0 5 0], the crude odds ratio is

FIGURE 1. Causal graphs for a time-dependent exposure.

FIGURE 2. Causal graphs for a point exposure A0.
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cOR 5 pr[Y 5 1uA0 5 1]pr[Y 5 0uA0 5 0]/{pr[Y 5
1uA0 5 0]pr[Y 5 0uA0 5 1]}, and, for example,
pr[Y 5 1uA0 5 1] is the probability that Y 5 1 among
treated subjects (A0 5 1). We assume that the study
subjects are a random sample from a large, possibly
hypothetical, source population. Probabilities refer to
proportions in the source population.

The causal contrasts that correspond to these associa-
tional parameters involve counterfactual variables. Spe-
cifically, the variable Ya051 denotes a subject’s outcome if
treated and Ya050 denote a subject’s outcome if left un-
treated. For a given subject, the causal effect of treat-
ment, measured on a difference scale, is Ya051 2 Ya050.
For no subject are both Ya050 and Ya051 observed. If a
subject is treated (A0 5 1), the subject’s observed
outcome Y equals Ya051, and Ya050 is unobserved. If A0 5
0, Y equals Ya050, and Ya051 is unobserved. Let pr(Ya051 5
1) and pr(Ya050 5 1), respectively, be the probability that
Ya051 is equal to 1 and Ya050 is equal to 1. Then, if
treatment A0 is unconfounded, the crude RD equals the
causal risk difference pr[Ya051 5 1] 2 pr[Ya050 5 1] in the
source population. The causal risk difference is the aver-
age of the individual causal risk differences Ya051 2 Ya050.
Similarly, the crude RR equals the causal RR, pr(Ya051 5
1)/pr(Ya050 5 1), and the crude OR equals the
causal OR, pr(Ya051 5 1)pr(Ya050 5 0)/{ pr(Ya051 5
0)pr(Ya050 5 1)}. Because of the possibility of effect
modification, the population causal parameter need
not equal the causal parameter within a stratum of the
measured risk factors L0 even if treatment is unconfounded.
Effect modification is considered in section 9.

3. Models for Point-Treatment Studies
The causal RD, RR, and OR can also be expressed in
terms of the parameters of the following linear, log
linear, and linear logistic models for the two counterfac-
tual probabilities pr(Ya051 5 1) and pr(Ya050 5 1).

pr@Ya0 5 1# 5 c0 1 c1a0 (1)

log pr@Ya0 5 1# 5 u0 1 u1a0 (2)

logit pr@Ya0 5 1# 5 b0 1 b1a0 (3)

where Ya0
is Ya051 if a0 5 1 and Ya0

is Ya050 if a0 5 0.
Specifically, the causal RD 5 c1, the causal RR 5
eu1, and the causal OR 5 eb1. Models 1–3 are saturated
MSMs. They are marginal models, because they model the
marginal distribution of the counterfactual random vari-
ables Ya051 and Ya050 rather than the joint distribution (that
is, models 1–3 do not model the correlation of Ya051 and
Ya050). They are structural models, because they model the
probabilities of counterfactual variables and in the econo-
metric and social science literature models for counterfac-
tual variables are often referred to as structural.8,12 Finally,
they are saturated, because each has two unknown param-
eters and thus each model places no restriction on the
possible values of the two unknown probabilities pr(Ya051 5
1) and pr(Ya050 5 1). Note that these models do not
include covariates, because they are, by definition, models

for causal effects on the entire source population; they are
not models for observed associations.

The crude RD, RR, and OR can also be expressed in
terms of the parameters of the following saturated linear,
log linear, and linear logistic models for the observed out-
come Y.

pr@Y 5 1uA0 5 a0# 5 c90 1 c91 a0 (4)

log pr@Y 5 1uA0 5 a0# 5 u90 1 u91 a0 (5)

logit pr@Y 5 1uA0 5 a0# 5 b90 1 b91 a0 . (6)

These are models for associations observed when com-
paring subpopulations (defined by levels of treatment) of
the source population. The crude RD equals c91, the
crude RR equals eu91, and the crude OR equals eb91. The
parameters of the associational models 4–6 will differ
from the parameters of the MSMs 1–3, except when
treatment is unconfounded. Because models 4–6 are
models for the observed data, (asymptotically) unbiased
estimates of the model parameters can be obtained using
standard statistical software (assuming no selection bias
or measurement error). When treatment is uncon-
founded, these same estimates will also be unbiased for
the corresponding causal parameters of models 1–3. For
example, to fit models 4–6, one could use the general-
purpose SAS program Proc Genmod, using the model
statement Y 5 A0 with the outcome Y specified as a
binomial variable. To estimate c91, one would specify the
identity link; to estimate u91, the log link; and for b91, the
logit link. Programs analogous to Proc Genmod also exist
in other packages, such as S-Plus, Gauss, and Stata.13–16

4. No Unmeasured Confounders
Suppose now that treatment is confounded. Then the
crude association parameter will not equal the corre-
sponding causal parameter. Similarly, the parameters of
the MSMs will fail to equal the parameters of the cor-
responding observed data models (for example, b0 Þ b90
and b1 Þ b91). Assuming we have no unmeasured con-
founders given data on measured confounders L0, unbi-
ased estimates of the causal parameters c1, u1, and b1
can, however, still be obtained using Proc Genmod by
performing a weighted analysis. Specifically, using the
weight statement (that is, option SCWGT) in Proc
Genmod, each subject i is assigned a weight wi equal to
the inverse of the conditional probability of receiving
his or her own treatment. That is, wi 5 1/pr[A0 5
a0iuL0 5 l0i], where, for example, l0i is the observed value
of the variable L0 for subject i. The true weights wi are
unknown but can be estimated from the data in a pre-
liminary logistic regression of A0 on L0. For example, we
might specify the logistic regression model

logit pr@A0 5 1uL0 5 l0# 5 a0 1 a1l0 (7)

where A0 is AZT treatment, L0 is, for example, the
column vector of covariates with components age, CD4
count, WBC count, hematocrit, and presence of symp-
toms, and a1 is a row vector of unknown parameters. We
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can then obtain estimates (â0, â1) of (a0, a1) using
standard logistic regression software. Then, for a subject
i with A0 5 0 and L0 5 l0i

, we would estimate wi 5
1/pr[A0 5 0uL0 5 l0i] by 1/{1/[1 1 exp(â0 1 â1l0i)]} 5
1 1 exp(â0 1 â1l0i). For a subject with A0 5 1 and
L0 5 l0i

, we would estimate wi 5 1/pr[A0 5 1uL0 5 l0i]
by {1 1 exp(â0 1 â1l0i)}/exp(â0 1 â1l0i) 5 1 1
exp( 2 â0 2 â1l0i).

In summary, if there are no unmeasured confounders
given data on L0, one can control confounding (due to
L0) by modifying the crude analysis by weighting each
subject i by wi. The denominator of wi is informally the
probability that a subject had his or her own observed
treatment. Thus, we refer to these weighted estimators as
IPTW estimators.

Why does this approach work? The effect of weighting
in Proc Genmod is to create a pseudopopulation con-
sisting of wi copies of each subject i. That is, if, for a
given subject, wi 5 4, the subject contributes four copies
of him- or herself to the pseudopopulation. This new
pseudopopulation has the following two important prop-
erties. First, in the pseudopopulation, unlike the actual
population, A0 is unconfounded by the measured covari-
ates L0. Second, pr(Ya051 5 1) and pr(Ya050 5 1) in the
pseudopopulation are the same as in the true study
population so that the causal RD, RR, and OR are the
same in both populations. Hence, it follows that we can
unbiasedly estimate the causal RD, RR, and OR by a
standard crude analysis in the pseudopopulation. But
this is exactly what our IPTW estimator does, because
the weights wi serve to create, as required, wi copies of
each subject. In the Appendix, we present a detailed
numerical example to clarify further our IPTW method-
ology, and we compare our methodology with the pro-
pensity score methodology of Rosenbaum and Rubin.17

5. Unmeasured Confounding
In the presence of unmeasured confounding factors U0,
one could still unbiasedly estimate the causal risk differ-
ence, risk ratio, and odds ratio as above if one used
weights wi 5 1/pr[A0 5 a0iuL0 5 l0i, U0 5 u0i] in
implementing the analysis in Proc Genmod. Neverthe-
less, because data on U0 are not observed, it is not
possible to estimate these weights unbiasedly. Indeed,
unbiased estimation by any method is impossible in the
presence of unmeasured confounding factors without
strong additional assumptions.

6. Multilevel Treatment and Unsaturated MSMs
Suppose again that treatment is unconfounded (as repre-
sented in Figure 2, c) but now A0 is an ordinal variable
representing a subject’s daily dose in units of 100 mg of
AZT. Possible values of A0 are 0, 1, . . ., 14, 15. In that case,
the number of potential outcomes associated with each
subject will be 16. Specifically, we let Ya0

be the value of Y
that would have been observed had the subject received
dose a0 rather than the observed dose. Thus, in principle, a
subject has a separate counterfactual variable for each of
the 16 possible AZT doses a0. The subject’s observed out-

come Y is the outcome Ya0
corresponding to the dose a0

equal to the subject’s observed dose. For expositional con-
venience, we continue to refer to all of the Ya0

’s as coun-
terfactuals, even though for a0 equal to the observed dose,
Ya0

is the factual variable Y. Because there are so many
potential outcome variables Ya0

, we can no longer conve-
niently perform a saturated analysis. Rather, we would
usually assume a parsimonious dose-response relationship
by specifying a linear logistic MSM such as

logit pr@Yao 5 1# 5 b0 1 b1a0 . (8)

This model says that the probability of success had all
subjects been treated with dose a0 is a linear logistic
function of the dose with slope parameter b1 and inter-
cept b0, so eb1 is the causal OR associated with an
increase in AZT dose of 100 mg.

We contrast the MSM model 8 with the following
linear logistic association model for the observed data.

logit pr@Y 5 1uA0 5 a0# 5 b90 1 b91a0 . (9)

Assuming no selection bias or measurement error, we can
unbiasedly estimate the associational parameters b90 and b91
by fitting the linear logistic model 9 using a standard
logistic regression software package such as SAS Proc Lo-
gistic or Proc Genmod. If the treatment is unconfounded,
then the parameters of models 8 and 9 are equal. As a
consequence, our logistic regression estimate of b91 is also an
unbiased estimate of our causal parameter b1.

If treatment is confounded by the measured variables
L0, then b1 Þ b91 and our standard logistic regression
estimate of b91 is a biased estimate of the causal param-
eter b1 owing to confounding by L0. However, even
when treatment is confounded, if there are no unmea-
sured confounders given L0, then one can obtain unbi-
ased estimates of the causal parameter b1 of model 8 by
fitting the logistic model 9 with Proc Genmod if one
uses subject-specific weights wi 5 1/pr(A0 5 a0 i

uL0 5
l0i). Again, in practice, wi is unknown and one must
estimate it from the data by specifying a model.

For example, one might specify the following polyto-
mous logistic model:

pr@A0 5 a0uL0 5 l0# 5

exp~a0a0 1 a1l0!/H1 1 O
j 5 1

15

exp~a0j 1 a1l0!J,
a0 5 1, . . . , 15;

pr@A0 5 0uL0 5 l0# 5 1/H1 1 O
j 5 1

15

exp~a0j 1 a1l0!J (10)

which can be fit in SAS using Proc Logistic or Genmod
to obtain estimates of the parameters a01, a02, . . ., a015,
and a1.

6.1. STABILIZED WEIGHTS

The probabilities pr[A0 5 a0iuL0 5 l0i] may vary greatly
between subjects when components of L0 are strongly
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associated with A0. This variability can result in ex-
tremely large values of the weight wi for a few subjects.
These few subjects will contribute a very large number of
copies of themselves to the pseudopopulation and thus
will dominate the weighted analysis, with the result that
our IPTW estimator will have a large variance and will
fail to be approximately normally distributed. If the
MSM model is saturated (for example, models 1–3), this
variability is unavoidable, because it reflects a lack of
information in the data as a result of the confounders L0
being highly correlated with treatment A0. For unsatur-
ated MSMs, such as model 8, however, this variability
can, to a considerable extent, be mitigated by replacing
the weight wi by the “stabilized weight” swi 5 pr[A0 5
a0i]/pr[A0 5 a0iuL0 5 L0i]. To understand the stabilized
weight, suppose A0 was unconfounded so that A0 and L0
are unassociated and pr[A0 5 a0i] 5 pr[A0 5 a0iuL0 5
l0i]. Then swi 5 1, and each subject contributes the same
weight. When A0 is confounded, swi will not be constant
but will vary around the number 1, depending on the
subject’s value of L0. swi, however, will still tend to be
much less variable than wi. Furthermore, Robins1,2 shows
that, when we use the weight swi rather than the weight
wi in Proc Genmod, the estimates of the parameters b of
an MSM remain unbiased and, in the case of an unsat-
urated MSM, will generally be less variable. For satu-
rated MSMs, the variability of our estimate of b will be
the same whether we use the stabilized or unstabilized
weights.

Of course, pr[A0 5 a0i] and pr[A0 5 a0iuL0 5 l0i] are
unknown and must be estimated. pr[A0 5 a0iuL0 5 l0i]
can be estimated as described above; pr[A0 5 a0i] can be
estimated as the proportion of subjects in the study
sample with A0 equal to a0i. This estimate is equivalent
to that obtained by fitting the polytomous model

pr~ A0 5 a0! 5 exp~a*0a0!/F 1 1 O
j 5 1

15

exp~a*0j!G ,

a0 5 1, . . . , 15

pr~ A0 5 0! 5 1/F 1 1 O
j 5 1

15

exp~a*0j!G (11)

where we place an asterisk on the parameter a*0a0
to

indicate that this parameter will differ from the param-
eter a0a0

of model 10 when A0 is confounded.
In Ref 2, Robins introduces augmented IPTW estima-

tors. These estimators are even more efficient than the
IPTW estimator that uses stabilized weights but are more
difficult to compute.

6.2. CONTINUOUS TREATMENT

Suppose we were able to measure a subject’s daily intake
of AZT to the nearest tenth of a milligram, so that now
AZT is essentially a continuous treatment. Further, for
expositional convenience, assume that no subject has
AZT dose near 0, and that we can effectively model the

distribution of A0 as normal. Now each individual has an
extremely large number of counterfactual outcomes Ya0

.
One can still obtain unbiased estimates of the causal
parameter b1 of model 8 by fitting the logistic model 9
with Proc Genmod if one uses the stabilized weights
swi 5 f(a0 i)/f(a0iul0 i), where f(a0ul0) is the conditional
density of the continuous variable A0 given L0, and f(a0)
is the marginal density of the continuous variable A0. To
estimate f(a0ul0), one might specify that, given L0, A0 is
normal with mean a0 1 a1L0 and variance s2. Then
unbiased estimates (â0, â1, ŝ2) of (a0, a1, s2) can be
obtained by ordinary least-squares regression of A0 on L0
using, for example, Proc REG in SAS. Then f(a0iul0i)
would be estimated by the normal density (2pŝ2)21/2

exp{ 2 [a0i 2 (â0 1 â1l0i)]2/2ŝ2}. To estimate the numer-
ator f(a0i) of the stabilized weight swi, one might specify
that A0 is normal with mean a*0 and variance s*2. f(a0i)
could be estimated by the normal density (2pŝ*2)21/2

exp[ 2 (a0i 2 â*0)2/2ŝ*2] where â*0 is the average of the
observed A0s and ŝ*2 is their empirical variance. When
A0 is continuous, estimates based on the unstabilized
weights wi 5 1/f(a0iul0i) have infinite variance and thus
cannot be used.1,2

6.3. CONFIDENCE INTERVALS

As described above, we shall estimate the parameters of
the MSM 8 by fitting the association model 9 in Proc
Genmod using estimates of the stabilized weights swi. If
we choose the option “repeated” and specify an inde-
pendence working correlation matrix, the Proc Genmod
program will also output a 95% “robust” Wald confi-
dence interval for b1 given by b̂1 6 1.96=var(b̂1),
where var(b̂1) is the so-called “robust”18 or “sandwich”
estimator of the variance of b̂1. Robins1,2 shows that the
“robust” Wald interval will have coverage probability of
at least 95%, although narrower valid intervals can be
obtained with some additional programming.1,2 The or-
dinary nonrobust model-based Wald confidence interval
outputted by most weighted logistic regression programs
will not be guaranteed to provide at least 95% coverage
and thus should be avoided. Other software packages
such as S-Plus, Gauss, and STATA also offer “robust”
variance estimators and could be used in place of Proc
Genmod.13,19–21

7. Time-Dependent Treatments
We now return to the setting of section 1, in which Ak
is the dose of treatment AZT on the kth day from start of
follow-up and Y is a dichotomous outcome variable
measured at end of follow-up on day K 1 1. Similarly,
Lk represents the value on day k of the vector of all
measured risk factors for the outcome. Let A# k 5 (A0, A1,
. . ., Ak) be the treatment or exposure history through
day k and let A# 5 A# K. Define L# k and L# similarly. Let Ya#
be the value of Y that would have been observed had all
subjects received dose history a# 5 (a0, a1, . . ., aK) rather
than their observed dose history A# . Note that, even if ak
is dichotomous on each day k (that is, on each day a
subject is either on or off treatment), there will be 2K
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dose histories a# and thus 2K possible counterfactuals,
only one of which is observed (that is, is factual). Thus,
it may not be possible to estimate a saturated MSM.
Therefore, we would generally assume some sort of par-
simonious dose-response relationship by specifying a lin-
ear logistic MSM such as

logit pr@Ya# 5 1# 5 b0 1 b1cum~a# ! (12)

where cum(a#) 5 (k 5 0
K ak is the cumulative dose through

end-of-follow-up associated with the dose history a#.
We contrast the MSM 12 with the following linear

logistic association model for the observed data:

logit pr@Y 5 1uA# 5 a# # 5 b90 1 b91cum~a# !. (13)

Assuming no loss to follow-up selection bias or measure-
ment error, we can unbiasedly estimate the parameters
b91 by fitting the linear logistic model 13 using a standard
logistic regression software package. If the treatment is
unconfounded, the parameters of models 12 and 13 are
equal. As a consequence, our logistic regression estimate
of b91 is also an unbiased estimate of our causal parameter
b1. If the treatment is confounded, then b1 Þ b91 and our
standard logistic regression estimate of b91 is a biased
estimate of the causal parameter b1 as a result of con-
founding by L# k. When treatment is confounded, how-
ever, if there is no unmeasured confounder given the Lk,
then one can still obtain unbiased estimates of the causal
parameter b1 of model 12 by fitting the logistic model 13
with the stabilized weights

swi 5 P
k 5 0

K

pr~ Ak 5 akiuA# k 2 1 5 a# (k21)i!/

H P
k 5 0

K

pr~ Ak 5 akiuA# k 2 1 5 a# (k21)i , L# k 5 l#ki!J (14)

where )k50
K bk 5 b0 3 b1 3 b2 3 . . . 3 bK and A# 2 1

is defined to be 0. Note in the special case in which
K 5 0 (that is, a point-treatment study), models 12 and
13 reduce to our previous models 8 and 9 and 14 reduces
to our previous swi. The denominator of swi is informally
the conditional probability that a subject had his or her
own observed treatment history through time K. With
time-dependent treatments the variation in the unsta-
bilized weights will often be enormous, with the result
that the resulting estimator of b can be highly variable
with a markedly non-normal sampling distribution. We
therefore strongly recommend the use of stabilized
weights.

We emphasize that when treatment is confounded, it
is the parameter b1 of our MSM 12, as opposed to the
parameter b91 of the association model 13 that is of policy
importance. To see why, consider a new subject from the
source or target population exchangeable with the N
study subjects. We would like to administer to the sub-
ject the treatment a# that minimized probability that he
or she has detectable HIV in the serum at the end of

follow-up, that is, pr(Ya# 5 1). Thus, for example, if the
parameter b1 of MSM 12 is positive (that is, the prob-
ability of having HIV in the blood increases with in-
creasing duration of AZT treatment), we would with-
hold AZT treatment from our subject. In contrast, the
parameter b91 of model 13 may be confounded by the
association of covariates with treatment. For example,
suppose physicians preferentially started AZT on sub-
jects who, as indicated by their prognostic factor history
(for example, CD4 count), were doing poorly. Further,
suppose that AZT had no causal effect on Y (that is,
b1 5 0). Then the parameter b91 (and thus our estimate
from the unweighted logistic regression) will be positive
but will have no causal interpretation as the effect of
AZT on Y.

7.1. BIAS INDUCED BY CONTROLLING FOR A VARIABLE

AFFECTED BY TREATMENT

One might suppose that an alternative approach to
controlling confounding by measured covariates is an
unweighted logistic model that adjusts for confounder
history L# ; L# K, such as

logit pr@Y 5 1uA# 5 a# , L# 5 l## 5 b 00 1 b 01cum~a# !

1 b 02cum~ l#! 1 b 03lk 1 b 04lk21 1 b 05l0

where, for simplicity, we here assume Lk consists of a
single covariate CD4 count at time k. Nevertheless,
even under our assumption of no unmeasured confound-
ers, the parameter b01 differs from the parameter b1 of our
MSM. What is worse is that the parameter b01 will
generally not have a causal interpretation, even if the
model for pr[Y 5 1uA# 5 a#, L# 5 l#] is correctly specified.
This is because cum(A# ) depends on a subject’s entire
treatment history, including A0, and A0 may affect the
time-dependent covariates Lk and Lk21. Fitting a logistic
model that adjusts for a covariate that is both affected by
treatment and is a risk factor for the outcome provides
an unbiased estimate of the association parameter b01 but
a biased estimate of the causal parameter b1. This is true
even under the null hypothesis of no direct, indirect, or
overall treatment effect (so that b1 of model 12 equals 0)
when, as in Figure 1, a component of Lk (for example,
red blood count) and the outcome Y have an unmea-
sured common cause U0 (for example, the baseline num-
ber of bone marrow stem cells).5,7,22–26

To summarize, standard regression methods adjust for
covariates by including them in the model as regressors.
These standard methods may fail to adjust appropriately
for confounding due to measured confounders Lk when
treatment is time varying, because (1) Lk may be a
confounder for later treatment and thus must be adjusted
for, but (2) may also be affected by earlier treatment and
thus should not be adjusted for by standard methods. A
solution to this conundrum is to adjust for the time-
dependent covariates Lk by using them to calculate the
weights swi rather than by adding the Lk to the regression
model as regressors.
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8. Estimation of the Weights
We now describe how to estimate the weights swi. For
simplicity, we again assume that the treatment Ak at
each time k is dichotomous. Consider first the denomi-
nator of model 14. We begin by estimating the unknown
probability pr[Ak 5 1uA# k 5 1uA# k21 5 a#k21, L# k 5 l#k] using
a pooled logistic model that treats each person-day as an
observation. For example, we might fit the model

logit pr@Ak 5 1uA# k21 5 a# k21 , L# k 5 l#k#

5 a0 1 a1k 1 a2ak21 1 a3ak22 1 a4lk 1 a5lk21

1 a6ak21lk 1 a7l0 (15)

where, for example, lk is the vector of CD4 count, WBC,
hematocrit, and an indicator for symptoms at time k, and
the a4, a5, a6, and a7 are row vectors. This model says
that the probability of being treated on day k depends in
a linear logistic fashion on the day k, the previous 2 days’
treatment, the current and previous days’ covariates, an
interaction between yesterday’s treatments and today’s
covariates, and the baseline covariates.

One can fit model 15 using any standard logistic
regression program. The numerator probabilities can be
estimated similarly, except that, in fitting model 15, we
remove the last four terms that are functions of the
covariates. That is, we fit the model as follows:

logit pr@Ak 5 1uA# k21 5 a# k21# 5 a*0 1 a*1k 1 a*2ak21

1 a*3ak22 . (16)

For each subject i, we then have our logistic program
output the estimated predicted values p̂0i, . . ., p̂Ki from
the fit of model 15, which are maximum likelihood
estimates of pr[Ak 5 1uA# k21 5 a#(k21)i, L# k 5 l#ki]. Similarly,
we have outputted the predicted values p̂*1i, . . ., p̂*Ki from
model 16, which are estimates of the quantities pr[Ak 5
1uA# k21 5 a#(k21)i]. Then we estimate swi by

swi 5 P
k 5 0

K

~p̂*ki!
aki~1 2 p̂*ki!

1 2 aki/

H P
k 5 0

K

~p̂ki)aki(12p̂ki!
1 2 akiJ . (17)

For example, 1 2 p̂*ki is an estimate of the probability
pr[Ak 5 akiuA# k21 5 a#(k21)i] when aki 5 0. The data analyst
will need to write a small program to compute swi for
each subject from the predicted values outputted from
the fit of models such as 15 and 16.

Under our assumption of no unmeasured confounders,
the resulting estimate of the causal parameter b1 will be
unbiased, provided the model 15 for pr[Ak 5 1uA# k21 5
a#k21, L# k 5 l#k] is correctly specified. Furthermore, under
these same conditions, the 95% robust Wald confidence
interval will be guaranteed to cover b1 at least 95% of
the time. The estimate of b1 will remain unbiased even
if the model 16 for pr[Ak 5 1uA# k21 5 a#k21] is misspeci-

fied.1,2 Indeed, if model 15 is correct and treatment is
confounded, model 16 is guaranteed to be somewhat
misspecified because of the noncollapsibility of logistic
models.25

9. Effect Modification by Pretreatment
Covariates
MSMs can be generalized to allow one to include pre-
treatment covariates. For example, model 12 could be
generalized to

logit pr@Ya# 5 1uV 5 v# 5 b0 1 b1cum~a# ! 1 b2v

1 b3cum~a# !v (18)

where V is a component of the vector of measured
pretreatment covariates L0, and b3 denotes a treatment-
covariate interaction. Note in model 18, b1 1 b3v
represents the effect of cumulative treatment on a linear
logistic scale within level v of the baseline variable V. As
our IPTW estimators already automatically adjust for
any confounding due to V, the particular subset V of L0
that an investigator chooses to include in model 18
should only reflect the investigator’s substantive inter-
est. For example, a variable V should be included in
model 18 only if the investigator both believes that V
may be an effect modifier and has greater substantive
interest in the causal effect of treatment within levels of
the covariate V than in the source population as a
whole.

We obtain unbiased estimates of the parameters of
model 18 under the assumption of no unmeasured con-
founders by fitting an association model such as

logit pr@Y 5 1uA# 5 a# , V 5 v# 5 b0 1 b1cum~a# ! 1 b2v

1 b3cum~a# !v (19)

using Proc Genmod with the estimated weights swi of Eq
17, modified only in that p*k is now the estimated pre-
dicted value from the fit of a model such as

logit pr@Ak 5 1uA# k21 5 a#k21 , V 5 v# 5 a*0 1 a*1k

1 a*2ak21 1 a*3ak22 1 a*4v.

Elementary epidemiologic textbooks emphasize that ef-
fect modification is logically distinct from confounding.
Nonetheless, many students have difficulty understand-
ing the distinction, because the same statistical methods
(stratification and regression adjustments) are used both
for confounder control and detection of effect modifica-
tion. Thus, there may be some advantage to teaching
elementary epidemiologic methods using marginal struc-
tural models, because then methods for confounder con-
trol (inverse-probability-of-treatment weighting) are
distinct from methods for detection of effect modifica-
tion (adding treatment covariate interaction terms to an
MSM).

Finally, an important caveat: MSMs cannot be used
to model the interaction of treatment with a time-
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varying covariate. For this, structural nested models
should be used.4 – 6 Therefore, it is not valid to include
in the covariate V in model 18 any components of the
time-dependent covariate Lk measured at any time
k . 0.

10. Censoring by Loss to Follow-Up
Heretofore, we have assumed that each study subject
is observed until end of follow-up at time K 1 1. In
this section, we allow for censoring by loss to follow-
up. Specifically, let Ck 5 1 if a subject was lost to
follow-up by day k and Ck 5 0 otherwise. We assume
that once a subject is lost to follow-up, the subject
does not later re-enter follow-up. No new idea is
required to account for censoring, provided we con-
ceptualize censoring as just another time-varying
treatment. From this point of view, to want to adjust
for censoring is only to say that our interest is in the
causal effect of the treatment A# if, contrary to fact, all
subjects had remained uncensored, rather than having
followed their observed censoring history. Our goal
remains to estimate the parameter b1 of the logistic
MSM 12 except now Ya# refers to a subject’s outcome
if, possibly contrary to fact, the subject has followed
treatment history a# and has never been censored.
Again, we can do so if there are no unmeasured
confounders for both treatment and censoring. To
formalize this idea, one adds at each time k the vari-
able Ck to the graph in Figure 1 just before Lk and after
Ak21. Then, the assumption of no unmeasured con-
founders for treatment and censoring is that no arrow
arising from the unmeasured causal risk factors U goes
directly into either Ck or Ak for any k. In that case, the
measured covariates Lk are sufficient to adjust both for
confounding and selection bias due to loss to follow-
up.

Again, we can obtain unbiased estimates of the causal
parameters b1 by fitting the linear logistic association
model 13 with appropriate weights included. Because
the outcome Y is unobserved unless the subject does not
drop out, that is, C# 5 (C0, . . ., CK11) 5 0, our weighted
logistic regression fit of model 13 is restricted to uncen-
sored subjects. The required subject-specific weight is
swi 3 swi

†, where

swi
† 5 P

k 5 0

K 1 1

pr~Ck 5 0uC# k21 5 0, A# k21 5 a# (k21)i!/

H P
k 5 0

K 1 1

pr~Ck 5 0uC# k21 5 0, A# k21 5 a# (k21)i , L# k 5 l#ki!J
and, in addition, in defining and estimating swi, we now
add to the right side of each conditioning event in
models 14–16 the event C# k 5 0, because otherwise, Ak
would not be observed. The unknown probabilities in
swi

† can be estimated using a pooled logistic model that
treats each person-day as an observation. Specifically,
we fit analogs of models 15 and 16 for logit pr[Ck 5

0uC# k21 5 0, A# k21 5 a#k21, L# k 5 l#k] and for logit pr[Ck 5
0uC# k21 5 0, A# k21 5 a#k21]. Note that the denominator of
the product swi 3 swi

† is informally the conditional
probability that an uncensored subject had his or her
observed treatment and censoring history through time
K 1 1. Thus, we refer to our weighted logistic estimator
as an inverse-probability-of-treatment-and-censoring
weighted estimator. If we view (Ak, Ck) as a “joint
treatment” at time k, then one can informally interpret
this denominator as simply the probability that a subject
follows his or her own treatment history, which is ex-
actly the interpretation that we had previously in the
absence of censoring.

11. Limitations of Marginal Structural Models
It is shown in Ref 2 and Appendix 2 that our IPTW
estimators will be biased and thus MSMs should not be
used in studies in which at each time k there is a
covariate level lk such that all subjects with that level of
the covariate are certain to receive the identical treat-
ment ak. For example, this circumstance implies that
MSMs should not be used in occupational cohort stud-
ies. To see why, consider an occupational cohort study
in which Ak is the level of exposure to an industrial
chemical at time k and Lk 5 1 if a subject is off work at
time k and Lk 5 0 otherwise. Then all subjects with Lk 5
1 have Ak 5 0, because all subjects off work are unex-
posed. Similarly, in a study of the effect of screening on
mortality from cervical cancer, women who have had
their cervix operatively removed by time k (which we
denote by Lk 5 0) cannot receive exposure (that is,
screening) at that time, so MSMs should not be used.
Nevertheless, g-estimation of structural nested models
can always be used to estimate exposure effects, even in
studies in which MSMs cannot be used. In many studies,
such as the analysis of the Multicenter AIDS Cohort
Study data described in our companion paper,27 we be-
lieve, based on substantive considerations, the above
difficulty does not occur and MSMs are a practical
method.

12. Conclusion
We have described how to use MSMs to estimate the
causal effect of a time-varying exposure or treatment on
a dichotomous outcome. In our companion paper,27 we
extend our results to survival time outcomes and com-
pare and contrast methods based on MSMs to alterna-
tive, previously proposed methods, based on g-estima-
tion of structural nested models and on estimation of the
g-computation algorithm formula.
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Appendix 1: Example
We will analyze the data in Table A1 under the assump-
tion of no unmeasured confounders given L0. For con-
venience, we shall ignore sampling variability and thus
the distinction between parameters of the source popu-
lation and their empirical estimates. Under the assump-
tion of no unmeasured confounder, pr(Ya051 5 1) is a
weighted average of the L0-stratum-specific risks among
the treated with weights proportional to the distribution
of L0 in the entire study population. That is, pr(Ya051 5
1) is given by

O
l0

pr@Y 5 1uA0 5 1, L0 5 l0# pr@L0 5 l0#

(A1)

where the sum is over the possible values of L0.17 We
refer to Eq. A1 as the L0-standardized risk in the treated.
Calculating from Table A1, we obtain that pr(Ya051 5
1) 5 0.32. Similarly, pr(Ya050 5 1) is the L0-standardized
risk in the untreated,

O
l0

pr@Y 5 1uA0 5 0, L0 5 l0# pr@L0 5 l0#

which, from Table A1, is 0.64. It follows that the causal
risk difference, risk ratio, and odds ratio are 20.32, 0.50,
and 0.26. Note that these differ from the crude param-
eters computed from Table A2. Thus, c1 5 20.32, u1 5
log 0.50, and b1 5 log 0.26 in models 1–3 differ from the
parameters c91 5 20.40, u91 5 log .044, and b91 5 log 0.18
of models 4–6.

As is well known, the causal risk difference and causal
risk ratio are also equal to weighted averages of the
stratum-specific risk differences and risk ratios. For ex-
ample, the causal RD equals the standardized risk differ-
ence (SRD) where

SRD 5 O
l0

RDl0pr@L0 5 l0#

and RDl0
5 pr[Y 5 1uA0 5 1, L0 5 l0] 2 pr[Y 5

1uA0 5 0, L0 5 l0] is the risk difference in stratum l0.

TABLE A1. Observed Data from a Point-Treatment
Study with Dichotomous Treatment A0, Stratified by the
Confounder L0

L0 5 1 L0 5 0

A0 5 1 A0 5 0 A0 5 1 A0 5 0

Y 5 1 108 24 20 40
Y 5 0 252 16 30 10
Total 360 40 50 50

TABLE A2. Crude Data from the Point-Treatment Study
of Table A1

A0 5 1 A0 5 0

Y 5 1 128 64
Y 5 0 282 26
Total 410 90
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Indeed, the usual way to estimate the causal RD is to
calculate the SRD. Our IPTW method is an alternative
approach to estimation of the causal RD that, in contrast
to the approach based on calculating the SRD, appro-
priately generalizes to unsaturated MSMs in longitudinal
studies with time-varying treatments, as discussed in
section 7.

Table A3 displays the data from the study in a differ-
ent format. In particular, it gives the number of subjects
with each of the possible combinations of l0, a0, and y, as
well as the weight w 5 1/pr[A0 5 a0uL0 5 l0] associ-
ated with each. The final column of the table represents
the number of subjects in the weighted pseudopopula-
tion for each combination of (l0, a0, y). Note that the
weights wi need not be whole numbers or sum to 1. As
a consequence, the number of subjects in the pseudopo-
pulation can be greater than the number in the actual
population. Tables A4 and A5 display the data from the
pseudopopulation in the same format as Tables A1 and
A2. It can be seen that L0 and A0 are unassociated in the
pseudopopulation, which implies that the treatment is
unconfounded. Furthermore, the lack of association be-
tween L0 and A0 implies that in the pseudopopulation,
the L0-standardized risk in the treated equals the crude
risk pr(Y 5 1uA0 5 1) 5 0.32 and the L0-standardized
risk in the untreated equals the crude risk pr(Y 5

1uA0 5 0) 5 0.64. Furthermore, the crude risk in the
treated pseudopopulation equals the L0-standardized risk
in the treated actual population and thus equals
pr(Ya051 5 1). Similarly, the crude risk in the untreated
pseudopopulation equals the L0-standardized risk in the
untreated true population and thus equals pr(Ya050 5 1).
It follows that, under the assumption of no unmeasured
confounder given L0, the crude risk difference, risk ratio,
and odds ratio in the pseudopopulation equal the causal
risk difference, risk ratio, and odds ratio in the actual
population. Finally, an IPTW analysis in Proc Genmod
estimates a crude parameter of the pseudopopulation and
thus a causal parameter of the actual population.

RELATION TO PROPENSITY SCORE AND HORVITZ-
THOMPSON METHODS

Rosenbaum and Rubin17 refer to the probability pi 5
pr[A0 5 1uL0 5 l0i] that subject i would receive treat-
ment as the propensity score. Note that IPTW weight wi
is not simply the inverse of the propensity score. Spe-
cifically, although wi is the inverse of the propensity
score for treated subjects, it is the inverse of 1 2 pi for
untreated subjects. Rosenbaum and Rubin17 showed
that, under the assumption of no unmeasured confound-
ers, one can control for confounding due to measured
covariates in a point-treatment study with a dichoto-
mous treatment by regarding the propensity score as the
sole confounder. Because the propensity score pi is a
continuous covariate, however, they suggested that, in
practice, one either approximately match treated with
untreated subjects on the propensity score or stratify
(that is, subclassify) on the basis of propensity score
quintiles. Even when there are no unmeasured con-
founders and the propensity score is unbiasedly esti-
mated, Rosenbaum and Rubin’s17 approach, unlike our
approach, suffers from the potential for substantial re-
sidual confounding due to the inability to obtain suffi-
ciently close matches or to uncontrolled intrastratum
confounding. More importantly, Rosenbaum and Ru-
bin’s17 propensity score methods, in contrast to our
IPTW methods, do not generalize straightforwardly to
studies with nondichotomous or time-dependent treat-
ments or exposures.

In the special case of a dichotomous time-indepen-
dent treatment, our IPTW estimator is essentially equiv-

TABLE A3. Inverse Probability of Treatment Weights w and Composition of the Pseudopopulation in a Point-Treatment
Study

L0 A0 Y

N
Observed

Population pr (A0uL0) w
N Pseudo

Population

1 1 1 108 0.9 1.11 120
1 1 0 252 0.9 1.11 280
1 0 1 24 0.1 10 240
1 0 0 16 0.1 10 160
0 1 1 20 0.5 2 40
0 1 0 30 0.5 2 60
0 0 1 40 0.5 2 80
0 0 0 10 0.5 2 20

TABLE A4. Pseudopopulation Created by Inverse Proba-
bility of Treatment Weighting from a Point-Treatment Study
with Dichotomous Treatment A0, Stratified by the Con-
founder L0

L0 5 1 L0 5 0

A0 5 1 A0 5 0 A0 5 1 A0 5 0

Y 5 1 120 240 40 80
Y 5 0 280 160 60 20
Total 400 400 100 100

TABLE A5. Crude Data from the Pseudopopulation of
Table A4

A0 5 1 A0 5 0

Y 5 1 160 320
Y 5 0 340 180
Total 500 500
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alent to estimating pr(Ya050 5 1) and pr(Ya051 5 1)
separately among the untreated (a0 5 0) and treated
(a0 5 1) using the Horvitz-Thompson estimator28 from
the sample survey literature.29 Robins and Rotnitzky30

and Robins31 proposed generalizations of the Horvitz-
Thompson estimator that could be used to estimate the
parameters of a saturated MSM model with a time-
varying treatment. Our IPTW estimators are further
generalizations that allow the estimation of nonsat-
urated MSMs with both time-independent and time-
dependent treatments.

Appendix 2
BIAS OF INVERSE-PROBABILITY-OF-TREATMENT WEIGHTED

ESTIMATORS IN THE SETTING OF SECTION 11
Consider a new study population for which pr(Ya051 5 1)
and pr(Ya050 5 1), and therefore the causal risk differ-
ence, are the same as for the population in Tables
A1–A5. The observed data for the new population,
however, given in Table A6, differs from the observed
data for the population studied in Tables A1–A5. Spe-
cifically, Table A6 differs from the observed data in
Table A1 only in that no subject with L0 5 1 receives
treatment A0 5 1, that is,

pr~ A0 5 1uL0 5 1! 5 0, (A2)

and thus represents the type of study discussed in section
11. We will show that when Eq A2 holds the IPTW
estimator of the causal risk, difference is now biased.

In Table A6, pr(Ya050 5 1) is again 0.64, the L0-
standardized risk in the untreated. Nevertheless, the
L0-standardized risk in the treated pr(Y 5 1uA0 5 1,
L0 5 0)pr(L0 5 0) 1 pr(Y 5 1uA0 5 1, L0 5
1)pr(L0 5 1) cannot be computed from the data in
Table A6, because there is no subject with history
(A0 5 1, L0 5 1), rendering pr(Y 5 1uA0 5 1, L0 5
1) uncomputable. Similarly, the SRD is not computable,
because the stratum-specific risk difference is undefined
in the stratum L0 5 1. Thus, pr(Ya051 5 1) and the
causal risk difference are not computable from the data

in Table A6, although we know by assumption that they
are still equal to the previous values 0.32 and 20.32.
Table A7 displays the data in Table A6 in the format of
Table A3. Tables A8 and A9 display the stratified and
crude data for the pseudopopulation constructed from
the last column of Table A7. Note that the SRD in
Table A8 for the pseudopopulation is undefined. The
pseudopopulation crude RD from Table A9 is 20.24,
which differs from the true causal risk difference c1 5
20.32. As discussed previously, however, it is the crude
RD in the pseudopopulation that our IPTW estimate of
the parameter c1 in the MSM pr(Ya0

5 1) 5 c0 1 c1a0
actually estimates. We conclude that our MSM estimate
is biased for the causal risk difference c1.

TABLE A6. Observed Data from a Point-Treatment
Study in Which Eq A2 Holds

L0 5 1 L0 5 0

A0 5 1 A0 5 0 A0 5 1 A0 5 0

Y 5 1 0 240 20 40
Y 5 0 0 160 30 10
Total 0 400 50 50

TABLE A7. Inverse Probability of Treatment Weights w
and Composition of the Pseudopopulation in a Point-Treat-
ment Study in Which Eq A2 Holds

L0 A0 Y

N
Observed

Population pr (A0uL0) w
N Pseudo

Population

1 1 1 0 0 ` 0*
1 1 0 0 0 ` 0*
1 0 1 240 1 1 240
1 0 0 160 1 1 160
0 1 1 20 0.5 2 40
0 1 0 30 0.5 2 60
0 0 1 40 0.5 2 80
0 0 0 10 0.5 2 20

* If N 5 0 in the observed data, then, regardless of the weight value, there is
nobody to be reweighted, so N 5 0 in the pseudopopulation too.

TABLE A8. Pseudopopulation Created by Inverse Proba-
bility of Treatment Weighting from a Point-Treatment Study
in Which Eq A2 Holds

L0 5 1 L0 5 0

A0 5 1 A0 5 0 A0 5 1 A0 5 0

Y 5 1 0 240 40 80
Y 5 0 0 160 60 20
Total 0 400 100 100

TABLE A9. Crude Data from the Pseudopopulation of
Table A8

A0 5 1 A0 5 0

Y 5 1 40 320
Y 5 0 60 180
Total 100 500
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