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Probability Logic and Probabilistic Induction
Sander Greenland

This article reviews some philosophical aspects of probability
and describes how probability logic can give precise meanings
to the concepts of inductive support, corroboration, refutation,
and related notions, as well as provide a foundation for logi-
cally sound statistical inference. Probability logic also provides
a basis for recognizing prior distributions as an integral com-

ponent of statistical analysis, rather than the current mistead-
ing practice of pretending that statistics applied to observa-
tional data are objective. This basis is important, because the
use of realistic priors in a statistical analysis can yield more
stringent tests of hypotheses and more accurate estimates than
conventional procedures. (Epidemiology 1998;9:322-332)
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Over the past two decades, there has been a dramatic
resurgence of Bayesian philosophy and methodology in
statistics, as reflected in recent textbooks'~> as well as
journal articles. This resurgence has as yet had little
impact in epidemiology, which instead has experienced
lively arguments between Popperian and non-Popperian
(but not necessarily Bayesian) philosophical positions
(see, for example, the debates in the volumes edited by
Greenland* and Rothman?®). This gap between statistics
and epidemiology is in part due to differing attitudes
toward mathematics and computing, which often seem
to be the pride and joy of statisticians but poorly con-
nected to the underlying epidemiologic reality.

I here review some basic elements from the philoso-
phy of probability which may be useful for bridging the
gap. Central among these elements is probability logic,
which provides an extension of deductive logic to rea-
soning under uncertainty*®? and which forms the basis
of certain arguments given for inductive inference in
Bayesian philosophy®® and certain arguments against
inductive inference in Popperian philosophy.®!? Because
intuitive reasoning under uncertainty is poor''? and
because epidemiologic inference involves so many un-
certainties (for example, about uncontrolled biases), one
could argue that probability logic should be a center-
piece of epidemiologic training. Instead, the topic is
absent from most epidemiology and statistics texts, even
those that purport to address foundational issues,!*4
while classes on probability and statistics usually cover
only mathematical models for probability and the statis-
tical methods derived from those models.
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Of necessity, the present review must be limited to
just those elements essential for understanding the basic
issues. It skips many concepts and viewpoints entirely; it
is also ahistorical, even though the history of the ideas is
illuminating. For more thorough coverage, one may con-
sult any of a number of philosophic treatises.”!5-17 Hack-
ing!® provides a superb history of the early origins of
probabilistic concepts and controversies, while Lad’® pro-
vides many interesting details of subjective Bayesian
history.

Probability Logic

In a companion paper, 1 have tried to document that
there are ambiguous and contradictory definitions for
the word “induction.”"® Notions of probabilistic reason-
ing suffer from at least as many problems, as witnessed by
the controversies surrounding the foundations of proba-
bility and statistics>7#!4-18 (controversies long kept hid-
den from students, lest standard analysis methodologies
be called into question'*). Nonetheless, beyond these
controversies one may discern a logical foundation for
deriving uncertain conclusions from uncertain premises
when certainties are measured by probabilities. The
present section outlines that foundation.

DEFINITIONS OF PROBABILITY
There are two major classes of probability definitions,
“objective” and “subjective.” Within these classes there
are many variants; this is especially true of “objective
probability,” which subsumes frequency, propensity, fi-
ducial, and necessarist or logical probability (confusing-
ly, “logical probability” is only a special case of proba-
bility logic). 1 will represent the dichotomy among
definitions prevalent today by the two most common
definitions in statistics, the frequency and the subjective
Bayesian definitions.

The frequency or frequentist definition asserts that
probabilities are limits of sequences of relative frequen-
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cies {proportions) of events. Because relative frequencies
are observable, limits of such sequences are purported to
be physical properties of systems or mechanisms that
generate sequences of events; hence, frequency proba-
bilities are sometimes called physical probabilities. In its
most pure form, frequentist theory denies any meaning
to probabilities of individual events, such as the outcome
of a given coin toss or patient.” This limitation of the
theory has led to the development of theories of physical
probability that allow individual probabilities, such as
propensity theory.!62!

Individual probabilities are also allowed under the
subjective Bayesian or personalist definition, which treats
probabilities as constructs of an observer’s mind. These
constructs are supposed to correspond to the observer’s
“rational certainty” about a statement, where rational
certainty means only that the certainties are constrained
to follow the axioms of probability.” Because such prob-
abilities vary from person to person, they are sometimes
called personal certainties, credibilities, personal probabili-
ties, or degrees of belief.

The terms “objective” and “subjective” confer some
misleading connotations that tend to bias naive readers
away from the subjective view.® For example, the word
“subjective” suggests elements of arbitrariness or irratio-
nality, whereas knowledgeable critics of subjective
Bayesian probability often complain that it is too strin-
gent in its demands for rational probability assignment
(see, for example, the discussion in Ref 22). In contrast,
the word “objective” suggests direct observability (like
the height of Mount Everest); nonetheless, limits of se-
quences of telative frequencies are defined in terms of
infinite sequences, which are not directly observable.
This metaphysical property of frequentist probabilities is
usually overlooked; instead, such probabilities are com-
monly described as referring to “the long run,” which is
rarely given a precise definition.” Other theories of ob-
jective probability share this metaphysical character,
including propensity theory.?!

[t should be noted that the two definitions of proba-
bility just described are not mutually exclusive: Some
authors believe that physical probabilities exist and can
be estimated, but also use subjective probabilities to
measure both personal degrees of uncertainty and phys-
ical probabilities.”®2*2* Problems arise only because mea-
sures of physical probabilities (such as traditional P-
values and confidence limits) are routinely
misinterpreted as measures of uncertainty about hypoth-
eses. >4

Despite the compatibility of objective and subjective
theories of probability, the metaphysical character of
objective theories has led some Bayesians to deny the
very existence of “objective” probabilities.*® One such
argument is roughly as follows: “Limits of sequences of
relative frequencies” are really only mental constructs
that are built and modified to follow observed relative
frequencies; that is, so-called “objective probabilities”
are only subjective probabilities constructed to mimic
the magnitudes of observed proportions. A related ob-
jectivist view is that physical probabilities are never
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more than theories about how certain relative frequen-
cies will unfold.?! As such, they cannot be validly de-
duced from observation of event frequencies (for the
same reason that no general theory can be validly de-
duced from observations alone). Consequently, “objec-
tive probabilities” can never be established as facts; they
are instead hypothesized laws governing physical behav-
ior, or hypothetical properties (propensities) of certain
types of objects.!®?! To complicate matters further, there
are forms of Bayesian statistics and probability logic that
are based on “objective” probability theory?®; hence,
there is a need to distinguish “objective” from “subjec-
tive” Bayesianism.” The latter has become so influential
today, however, that most modern discussions of Bayesi-
anism and probability logic (including the present one)
focus on the subjective variety.}6-8

Subjective probabilities can apply to statements about
events, and so are often confused with physical proba-
bilities. As an example, suppose you read a report of a
randomized trial. The investigators might be 95% cer-
tain of truth of the statement: “The lower and upper
95% confidence limits for the risk difference contain the
true effect.” If derived from a well conducted randomized
trial, that may be a perfectly reasonable subjective prob-
ability to have if there are few other data available.
Nonetheless, following standard frequentist theory, the
physical probability that those limits contain the true
value is either one (if they do contain the true value) or
zero (if they do not). There is no conflict here; the sense
of conflict arises in part because, in ordinary language,
the event in question (true effect between the 95%
limits) must be described by a statement that the event
occurred. This statement is not usually set off by quota-
tion marks, as done here. Thus, ordinary language and
ordinary thinking do not distinguish the event (to which
the physical probability refers) and the statement describ-
ing the event (to which the subjective probability refers).
This distinction is important, however, for avoiding
misuse of frequentist statistics such as P-values.’

AXIOMS OF PROBABILITY

Despite confusion and conflict, virtually all writers agree
that probabilities should follow a few simple axioms and
definitions. From those rudiments, one can validly de-
duce a vast body of logical consequences, known as
probability theory. This axiomatic and definitional
agreement results in many parallel structures in objec-
tive and subjective probabilistic systems, despite the fact
that the objective system refers to the physical world and
the subjective system refers to mental worlds. The key
difference is that physical probabilities can apply only to
physical events or states, whereas subjective probabilities
can apply to any precise declarative statement, whether
it concerns physical events or states or a hypothesis that
expresses a general law of nature.

The first axiom requires probabilities to be nonnega-
tive. The second axiom requires that every logically
inevitable event (in objective terms) or tautology (in
subjective terms) have a probability of one. For example,
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the statement “The confidence interval either will or
will not contain the true value” is a tautology (that is, it
is logically inevitably true, regardless of any facts), and
the event it describes is logically inevitable; the state-
ment and event cover all possibilities. Therefore, the
objective probability of the event (if it exists) must be
one; analogously, according to the subjective theory, we
should set our subjective probabilities for the statement
to one.

The third axiom requires that if A and B are mutually
exclusive, the probability of “A or B” must equal the sum
of the probability of A and the probability of B. Two
events are mutually exclusive if no more than one of
them can happen; two statements are mutually exclusive
(or mutually inconsistent) if no more than one of them
can be true. For example, the following two statements
and the events they describe are mutually exclusive:
“The observed risk difference will be greater than the
true effect” and “the observed risk difference will equal
the true effect.” Axiom 3 asserts that the sum of the
objective probabilities of these two events must equal
the objective probability of the event described by “the
observed risk difference will be greater than or equal to
the true effect” (if these probabilities exist). In parallel,
Axiom 3 asserts that we should set our subjective prob-
abilities so that the sum of probabilities for the first two
statements equals the probability of the last statement.

To summarize, let Pr stand for probability, and let A
and B stand for any two events (in the objective theory)
or statements (in the subjective theory). The above
three axioms then assert that objective probabilities do
satisfy and subjective probabilities should satisfy

Al) Pr(A) =0
A2) Pr(A) = 1 if A is a tautology
A3) Pr(A or B) = Pr(A) + Pr(B)

if A and B are mutually exclusive.

(Percentages can be used in place of proportions; Axiom
2 then asserts that Pr(A) = 100% if A is logically
inevitable.)

JUSTIFICATION OF THE AXIOMS

Axioms | and 2 have almost no content given Axiom 3.
In essence, they assert only that we should measure all
probabilities (whether frequencies or certainties) on a
proportion scale ranging from 0 = never or impossible to
1 = always or inevitable. We can always do so: For
example, if we measure our certainties about statements
using odds, we need only divide our odds by one plus the
odds to transform our certainties to a 0-to-1 scale.

For frequentist theory, the above three axioms are
assertions about how physical probabilities behave.
When expressed as proportions or percentages of a total,
common physical quantities {for example, counts, areas,
weights) obey the above axioms: Proportions are non-
negative (Axiom 1), the total is 100% of itself (Axiom
2), and the proportion or percentage contributed by two
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nonoverlapping (exclusive) parts of the total equals the
sum of the proportions or percentages contributed by
each part separately (Axiom 3). For example, if 30% of
the marbles in a bag are red and 20% are blue, then 20%
+ 30% = 50% of the marbles are red or blue. Because
physical probabilities are limits of sequences of relative
frequencies and the latter are proportions, such proba-
bilities must have the same bounds and additive behav-
ior as proportions.

For the subjective theory, the axioms are normative
rules about how we ought to constrain our personal
probabilities. Several justifications have been offered for
these constraints.>¢7#>526 An argument paralleling the
frequentist justification is the following: Suppose we
believe that a given event has a physical probability, and
we know that probability or have a generally accepted
estimate of it, as with certain games of chance and with
quantum events. It has been proposed that we should
then set our subjective probability for the statement of
the event to the known physical probability.”#? This
rule or axiom has been called the Principal Principle of
subjective probability.”?? Because physical probabilities
(if they exist) obey the above three probability axioms,
we should make sure that our subjective probabilities do
so as well in order to ensure that our predictions are as
well calibrated as possible, that is, to ensure that our
predictions of future event frequencies (for example,
incidence rates) are as close as possible to the event
frequencies that actually come to pass.

THE DUTCH BOOK ARGUMENT

The axiom justifications given above will not do for
those who deny that physical probabilities exist. There
is, however, yet another rationale for Axioms 1-3, called
the “Dutch Book argument.”®’!6 The premise of this
argument is that you are willing to “put your money
where your mouth is,” in the following sense. Let us say
you would bet on your probability assignments, up to a
total stake of s dollars per assignment, if for each assign-
ment Pr(A) you would accept either of the following
bets, at my choice:

1. You would wager $sPr{(A) on A true against my
$s5(1 — Pr(A)) on A false;

2. You would wager $s{1 — Pr(A)) on A false against
my $sPr(A) on A true.

In other words, you offer betting odds of Pr{A)/(1 —
Pr(A)) on A true, and will bet either way at those odds
as long as the total money at stake does not exceed a
certain amount. For example, suppose A is the statement
that a given study will exhibit a negative association,
you assign Pr(A) = 0.60, and you are willing to bet up
to a total stake of a dollar per assignment. You would
then be willing to wager 60 cents on a negative associ-
ation against my 40 cents on a nonnegative association,
and equally willing to trade sides by wagering 40 cents
on a nonnegative association against my 60 cents on a
negative association.
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Ramsey? and DeFinetti?® made the following discov-
ery: If you are willing to bet on your assignments and
your assignments violate any of the three probability
axioms, it will be possible for other people to set up a
system of bets against you, based on your probabilities,
such that they will be guaranteed to win money from you
no matter what the truth of the statements in the bets; in
other words, you can be forced into sure loss (Appendix
1 gives a brief proof of this result). Conversely, if your
assignments obey the probability axioms, no one will be
able to force your loss with a system of bets based on your
probabilities. (A system of bets that forces loss on a
bettor is called a “Dutch Book.”)

Some writers find the Dutch Book argument so com-
pelling that they define a system of personal probability
assignments to be coherent if and only if it satisfies
Axioms 1-3.367 Others dismiss the argument, comment-
ing that it may be compelling when gambling, but sci-
ence is about testing hypotheses, not gambling on them
(see, for example, the discussion in Ref 22). Nonethe-
less, these critics tend to be believers in physical prob-
abilities; for them, the good frequentist properties of
Bayesian procedures can supply another rationale for the
use of Bayesian statistics in random sample surveys and
randomized trials.?? It can also be argued that applica-
tions of science involve gambles on hypotheses; for
example, in banning the asthma drug fenoterol, author-
ities would be gambling in favor of the hypothesis that
the death rate would be lower with the ban than with-
out.

In the objective theory, Axiom 3 is extended to
include infinite sequences of events. Such a leap to the
infinite has been resisted by some*¢ but not all’ subjec-
tive Bayesians. Fortunately, this divergence has no con-
sequence for the present discussion and so will not be
considered further.

CONDITIONAL PROBABILITY AND INDEPENDENCE

In the objective theory, we condition on an event C by
examining limits of relative frequencies among events of
the form “A and C,” where A is another event. This
leads to the following axiom for the conditional proba-

bility of A given C, denoted Pr(A|C):
A4) If Pr(C) > 0, Pr(A | C) = Pr(A and C)/Pr(C).

In the objective theory, this axiom is usually referred to
as a definition, but its justification is analogous to those
for the other three axioms: Proportions and percentages
of ordinary physical quantities will follow Eq 4. For
example, if 60% of the marbles in a bag are red and 30%
of the marbles are red and small, the percentage that are
small among those that are red is 30/60 = 50%.

One interpretation of Eq 4 is as an axiom that shows
how to modify or update our certainty about statement
A if we learn that C is correct.” For example, suppose A
is the hypothesis that “first-trimester retinol supple-
ments can increase risk of limb reduction defects (LRD)
in humans” and C is the hypothesis that “retinol sup-
plements can increase LRD risk in rats.” If you were 50%
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certain that rats can be affected (C) and 40% certain
that the LRD risks of both humans and rats can be
affected (A and C), Axiom 4 instructs you to become
0.40/0.50 = 80% certain that humans can be affected
(A) if you are given that rats can, indeed, be affected
(C). Like the other three probability axioms, Axiom 4
can be justified by a Dutch Book argument.’

An event or statement A is independent of another
event or statement B if conditioning on B does not
change the probability of A: Pr(A|B) = Pr(A). If A is
independent of B, then B is independent of A, so the
independence relation is symmetric. That is, if Pr(A|B)
= Pr(A), then

Pr(A and B)
Pr(B)

= Pr(A | B)Pr(B) = Pr(A)Pr(B),

Pr(A and B) = Pr(B)

50
Pr(B|A) = Pr(A and B)/Pr(A)
= Pr(A)Pr(B)/Pr(A) = Pr(B).

In the subjective theory, independence of A and B is a
property of your probability assignment; it means that
learning B is true will not alter your probability for A,
and that learning A is true will not alter your probability
for B.

Finally, A is conditionally independent of B given
another event or statement C if further conditioning on
B does not change the probability of A after condition-
ing on C; that is, if Pr(A|B and C) = Pr(A|C). This
relation is also symmetric, in that it implies Pr(A and
B|C) = Pr(A|C)Pr(B|C) and Pr(B|A and C) = Pr(B|C).
In the subjective theory, it means that learning B is true
will not alter your probability for A and learning A is
true will not alter your probability for B, once you are
given that C is true.

Relations between Hypotheses and Observations
in Probability Logic

For the remainder of the paper, let H stand for a hy-
pothesis and let B stand for the outcome of an observa-
tion process, with both H and B of uncertain status a
priori; that is, 0 < Pr(B) < 1 and 0 < Pr(H) < L. In
typical problems, H is an assertion of a causal relation,
whereas B is a description of a study and the data it
obtained. The following definitions qualitatively char-
acterize the dependence of H on B within a system of
probability assignments Pr( ):

1. B proves H means that B would render H certain:
Pr(H|B) = 1.

2. B supports H means that B would raise the proba-
bility of H: Pr(H|[B) > Pr(H).

3. B is neutral with respect to H means that B would
not change the probability of H: Pr(H|B) = P(H);
that is, H is independent of B.
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4. B undermines or countersupports H means that B
would reduce the probability of H: Pr(H|B) <
P(H).

5. B refutes H means that B would render H certainly
wrong: Pr(H|B) = 0.

[t is common to see “confirms” used as a synonym for
“supports” and “disconfirms” used as a synonym for “un-
dermines,” but 1 feel these terms have connotations too
suggestive of “proves” and “refutes.”

In ordinary English, one could also use “corroborates”
as a synonym for “supports,” but Popper?! established
another meaning for qualitative corroboration in the
philosophy of science:

6. B corroborates H means that finding B false would
refute H: Pr(H|not B) = 0.

Appendix 2 shows that corroboration defined in this
manner implies but is not implied by support, and nei-
ther implies nor is implied by proof; thus, corroboration
is a strong form of support, though not as strong a form
as proof. Corroboration is closely related to traditional
notions of prediction, defined by

7. H predicts B means that H certainly implies B:
Pr(H implies B) = 1.

Because H certainly implies B if and only if B is certain
given H, we could equivalently define “H predicts B” to
mean that B is certain given H: Pr(B/H) = 1.

A number of authors have attempted to define mea-
sures of support or corroboration. Although no measure
has prevailed in the literature, it has been recognized
that an appropriate measure would have to involve com-
parison of probabilities.®?! Nonetheless, some proposed
measures (such as relative likelihood) are based on com-
parison of observation probabilities, rather than hypoth-
esis probabilities.

Popperian writings often emphasize the roles of refu-
tation and corroboration in scientific research, while
criticizing notions of proof of hypotheses. From the
perspective of subjective probability, refutation and cor-
roboration are as criticizable as proof because they de-
mand an absolute certainty (probabilities of 0 or 1). A
strength of the subjective theory is that it provides
precise concepts of support and countersupport without
invoking absolute certainty.

PROBABILISTIC INDUCTION AND BAYES' THEOREM

The general idea of probabilistic induction is that ob-
servations may somehow induce observers to make prob-
ability assignments, or at least induce observers to
change their assignments. Such ideas can be traced back
to the 17th century'®!®; since then, a number of con-
cepts in probability logic have been interpreted as prob-
abilistic induction.

One interpretation is that probabilistic induction is
the process of setting our probabilities for an unobserved
outcome to the frequency of that outcome in an appro-
priate set of previous observations. This concept has also
been called statistical induction, although it was expli-
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cated by Hume long before statistics was established as a
topic distinct from probability.?” The concept long re-
mained imprecise because of the vagueness surrounding
the concept of “an appropriate set of previous observa-
tions.”” In modern subjective theory, however, “appro-
priate” is defined in terms of exchangeability,*® a concept
that will be discussed below.

A simpler interpretation is that probabilistic induc-
tion corresponds to use of any probability theorem to
update (change) one’s probability assignments in light of
new observations; that is, to compute new assignments
conditioned on the new observations. In particular, in
modern subjective theory, probabilistic induction usu-
ally refers to the deductive process of updating probabil-
ities using Bayes’ Theorem and its consequences. The
theorem, also known as Bayes’ rule or Bayes’ formula, is
a simple formula which shows how to move from an
initial or prior probability Pr(H) for a hypothesis H to an
updated or posterior probability Pr(H|B) based on a new
observation B.%7 There are several versions of the theo-
rem; the original form derived by Rev. Thomas Bayes, a
contemporary of Hume’s, goes as follows:

8. A new observation B should change the probabil-
ity of H via multiplication by the factor Pr(B|H)/
Pr(B); that is,

Pr(B|H)
Proof:
Pr(H and B)
PI‘(H | B) = Tr(g)-—
3 Pr(H and B)/Pr(H) 3 Pr(B| H)
T PeBYPr(H) TV Pu(B)

An immediate corollary is that B alters the probability of
H by the same proportion as H alters the probability of
B:

9. Pr(H[B)/Pr(H) = Pr(B|H)/Pr(B).

Many other relations between observations and hypoth-
eses can be derived from Bayes’ Theorem. Here are some
simple but nonetheless statistically useful examples:

10. B corroborates H if and only if H predicts B; that
is, Pr(H|not B) = 0 if and only if Pr(B|H) = 1.

11. B supports H if and only if B is more probable
under H; that is, Pr(H|B) > Pr(H) if and only if
Pr(B|H) > Pr(B).

12. B undermines H if and only if B is less probable
under H; that is, Pr(H|B) < Pr(H) if and only if
Pr(B|H) < Pr(B).

13. Brefutes H if and only if H predicts not-B; that is,
Pr(H|B) = 0 if and only if Pr (not B[H) = 1.

Bayes’ Theorem and its consequences provide basic log-
ical connections between probabilities of data given
hypotheses, which are the outputs of standard statistical
methods, and probabilities of hypotheses given data,



Epidemiology May 1998, Volume 9 Number 3

which are routinely requested by scientists and the gen-
eral public. In particular, proposition 11 provides one
way of making precise the commonsense notion that
successful predictions support a hypothesis.

There are theorems more elaborate than Bayes’ that
may also be interpreted as forms of probabilistic induc-
tion; see, for example, sec. VI, Ch. 15, of Good.®

THE POPPER-MILLER ARGUMENT

In a letter to Nature that inspired a small literature in
philosophy (Refs 2832 provide some examples), Popper
and Miller® claimed to prove that “probabilistic induc-
tion” was impossible. The definition of “probabilistic
induction” that they used was not any of those given
above, however. In fact, Popper and Miller noted that
corroboration as defined above does imply probabilistic
support; they simply argued that probabilistic support is
not the same as probabilistic induction (using their def-
inition of induction).!® As several authors have pointed
out, the proof depends on the idiosyncratic definitions
used by Popper and Miller’#-3 (for example, Howson
and Urbach’ describe those definitions as “eccentric”
and “strange”).

What Popper and Miller actually showed was that, if
Pr(H|B) < 1 and Pr(B) < 1 (that is, if the hypothesis H
is not certain given the observation B, and the observa-
tion B is not certain), then Pr(B implies H/B) < Pr(B
implies H). Popper and Miller implicitly defined proba-
bilistic induction to be the reverse inequality, Pr(B im-
plies H|B) > Pr(B implies H); hence, under their defini-
tion, “probabilistic induction” is impossible. This result is
simply irrelevant to the definitions of probabilistic in-
duction given earlier; at best, it is another warning that
controversies often arise from semantic divergences.'
Popper and Miller did, however, make one concluding
statement that is agreed upon by all discussants: “There
is such a thing as probabilistic support,™ ¥ by which
they meant that proposition 11 given above is a valid
relation between predictions and hypotheses. For those
who define probabilistic induction as the process of up-
dating probabilities in light of new observations, Popper
and Miller’s statement is a startling concession of the
possibility and existence of such inductive processes.”®

Bayesian Statistical Analysis

There is nothing controversial about Bayes’ Theorem
and its consequences as mathematical formulas. What is
controversial is the use of subjective probabilities in the
theorem, especially probabilities of hypotheses.* Even if
one accepts the Bayesian philosophy, however, there are
two practical obstacles to its application: Computation
of the unconditional probability Pr(B) of the observa-
tion B, and specification of the prior probability Pr(H) of
the hypothesis H. In typical applications, evaluation of
Pr(B) requires difficult integration, although modern
computing developments have greatly diminished the
importance of this obstacle.! In contrast, proposed solu-
tions to the specification problem remain controversial.
Interestingly, Bayes was well aware of the philosophical,
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specification, and computational difficulties raised by
the theorem, which may explain why he refrained from
publishing his essay.”’

Suppose now we wish to compare the posterior prob-
abilities of two hypotheses H, and H,. One way to do so
is to take their ratio, which is called their posterior odds,

Pr(H, | B)/Pr(H, | B)

Applying Bayes’ Theorem to both the numerator and
denominator of this ratio, we obtain

Pr(H, | B) 3 Pr(B| H,)Pr(H,)/Pr(B)

Pr(Hy|B) ~ Pr(B| Hg)Pr(H,)/Pr(B)

Pr(B|H,)Pr(H,)

~ Pr(B| Ho)Pr(Ho)’

The ratio Pr(B|H,)/Pr(B|H,) in this equation is often
called the Bayes factor comparing the two hypotheses,
while the ratio Pr(H,)/Pr(H,) of the prior probabilities is
called their prior odds.! With these definitions, the pre-
ceding equation yields

PI'(B | Hl)

Pr(B | Ho)

_ Pr(H, | B)/Pr(Ho |B) _ Posterior Odds
T Pr(H,)/Pr(H,) = Prior Odds

Bayes factor =

so that the Bayes factor measures the change in the odds
of H, us H, produced by observation B. These equations
bring some computational and conceptual simplifica-
tions to Bayesian analyses; for example, when H; and H,
represent one-point statistical hypotheses (such as
“OR = 2” and “OR = 1” in a two-by-two table), the
Bayes factor is the same as the likelihood ratio of ordinary
statistics,”“"!? which in many problems is easily derived
from standard statistical outputs. Nonetheless, the equa-
tions do not supply all the statistics one might want from
an analysis, such as posterior (Bayesian) interval esti-
mates.!

THE SPECIFICATION OF PRIOR PROBABILITIES

There are three major approaches to the specification
problem. The first and oldest, dating back to Laplace in
the 18th century,” is not really part of the modern
subjective theory. It attempts to identify and specify
“noninformative,” “ignorance,” or “reference” prior dis-
tributions.>* For epidemiologic analyses, this approach
usually vields numerical results close or equal to standard
frequentist procedures; for example, the posterior prob-
ability intervals (“Bayesian confidence intervals”) ob-
tained in this manner are usually close or equal to
standard confidence intervals. Their interpretations are
entirely different, however; for example, 95% posterior
probability limits of 1 to 3 for a risk ratio RR are a pair
of numbers such that Pr(1 < RR < 3) = 0.95, where
Pr () refers to the analyst's probability assignment. In
contrast, frequentist 95% confidence limits of 1 to 3 for
RR have no analogous physical probability interpreta-
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tion; although commonly misinterpreted as posterior
probability limits, they are simply a pair of numbers that
are either known to be generated by a random mecha-
nism (if the study involved randomization) or not (if the
study was purely observational).

Methods that employ reference priors are sometimes
called “objective,” “logical,” or “necessarist” Bayesian
methods, although here “objective” means only “agreed
upon by convention.” Such methods are arguably less
logical and less scientific than subjective Bayesian meth-
ods.*"%* Consider a simple epidemiologic example, that
of coffee drinking and its association with myocardial
infarction. No one on any side of the controversy has
ever argued that drinking one cup a day would elevate
rates by more than 10% (RR = 1.1), if at all. Yet the
standard “reference” prior for the coefficient of coffee
cups per day (for example, in a proportional-hazard
model) assigns the same prior probability density to
In(RR) = In(1.1), In(RR) = 107'%, and every other
numerical possibility, such as in(RR) =10'®, If In(RR)
=10'%, consuming a cup of coffee would usually lead to
an immediate massive coronary. No one would give
In(RR) = 10' any credence if they understood its
substantive meaning. Nonetheless, some statisticians
continue to use and promote so-called “noninformative”
priors, which correspond to precisely these kinds of
scientific absurdities. Their use is sometimes rationalized
on the grounds that the resulting procedures are robust
(see below), but robustness against absurd possibilities is
unnecessary and often costly in terms of overall accuracy
and credibility of results.?

Another faulty rationale for noninformative prior dis-
tributions is that “they allow the data to speak for
themselves.” In reality, data never speak for themselves:
Every analysis has to filter data through some set of
simplifying assumptions, such as assumptions that the
data were generated by a conventional probability
mechanism.3243-7 This problem is recognized in Pop-
per’s theme that all observations are theory-laden.?! In
non-Bayesian analyses, all assumptions are incorporated
into and often hidden by models for data probabilities
[for example, models for Pr(B|H,) and Pr(B|H,), where
H, and H, specify parameter values in a logistic model].
Bayesian methods allow one to shift the form and bur-
den of some of the assumptions to models for prior
probabilities [for example, models for Pr(H,} and
Pr(H,)]; such assumptions can and should be checked
against data, just as one should check models for data
probabilities.®2435

At the other extreme from noninformative specifica-
tion, there have been attempts to elicit detailed quan-
titative specifications of prior probabilities from scien-
tific experts.>** These are laudable efforts to
operationalize the spirit of Bayesian philosophy. There
are many practical drawbacks to this approach, however.
First, it can require extraordinary effort on the part of
both the experts and the statisticians, more than prac-
tical for routine use. Second, it will not produce a
convincing analysis unless either (a) there is a high
degree of consensus among all experts in the field under
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study, so that every member of the intended audience
would accept the specification used, or (b) the results are
reasonably insensitive to the prior specification, in
which case the effort to make the latter precise was
unnecessary.'

A third approach, which may be viewed as somewhere
between the extremes of noninformative and detailed
specifications, is to focus on incorporating accepted
qualitative information into the prior specification, leav-
ing quantitative details as unknown parameters to be
estimated in a higher-stage model. Such hierarchical-
Bayes approaches (also known as multilevel, empirical-
Bayes, or random-coefficient modeling) have expanded
in parallel with recent algorithmic and computing ad-
vances!* and are well suited to many epidemiologic
problems.’®-# For example, in studies of diet, nutrition,
and health, nutrient measurements are constructed from
diet measurements in a linear fashion using nutrient
tables, and this qualitative information can be used in
modeling without precisely specifying prior probabilities
for any effects.?!

As with conventional (frequentist) analysis methods,
a thorough Bayesian analysis must consider many issues,
including insensitivity and robustness. A result is insensi-
tive if it does not change much under reasonable
changes in the analysis assumptions (of which the prior
specification is but one), whereas a method is robust if the
results it produces remain valid under reasonable depar-
tures from its assumptions. Insensitivity and robustness
are related but do not imply one another: a nonrobust
method may yield an insensitive result, and a robust
method may yield a sensitive result. Furthermore, a
robust method can be much less accurate than a nonro-
bust method that is well tailored to the topic at hand—
which is another reason why the robustness of certain
“objective” Bayes and frequentist methods is not a com-
pelling argument in their favor.2

EXCHANGEABILITY

Central to any serious attempt at probability specifica-
tion is the concept of exchangeability.!64-% Although
this concept is defined in both objective and subjective
theories, | will here discuss only the subjective version.
In subjective terms, you regard two unknown quantities,
X and Y, as exchangeable (or permutable or symmetric) if,
for any statement involving one or both of them, your
probability assignment will not change if X and Y were
interchanged. For example, for two individuals of un-
known HIV status but identical values for known pre-
dictors of HIV status (age, gender, intravenous drug use,
ethnicity, and sexual activities), I would regard their
HIV status indicators X and Y (1 = positive, 0 =
negative) as exchangeable. Thus, I would have Pr(X <
Y)=P(Y<X),Pr(X=0)=Pe(Y =0),Pr(X = 1) =
Pr(Y = 1), and so on; with respect to my probability
assignments, X and Y would be indistinguishable. More
generally, you would regard the unknown quantities in a
collection as exchangeable if they were indistinguishable
or interchangeable with respect to your probability as-
signments.
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Exchangeability is implied by but does not imply the
common statistical assumption that the quantities under
study are independent and identically distributed.® It is
the exchangeability of characteristics of sampled persons
with those of unsampled persons that justifies statistical
inferences from a survey sample to the popula-
tion.!364-4# Similarly, in comparative trials, it is the
exchangeability of group outcomes under homogeneous
treatment allocation that justifies inferences about
causal effects.!*** Random sampling in surveys and
randomization in comparative trials are perhaps the
most dependable but not the only methods for inducing
observers to make exchangeable probability assignments;
for example, certain forms of systematic sampling or
treatment allocation may suffice.

In nonexperimental comparisons, exchangeability
arises in a much more conditional, partial fashion, be-
cause such comparisons require control of a “sufficient”
set of selection and risk predictors. Here “sufficient”
means that, within levels of controlled predictors, the
outcomes of the different exposure groups would be
exchangeable if every subject received the reference
exposure level.¥ Note that matching in nonexperimen-
tal studies does not necessarily induce such exchange-
ability; it only ensures that, within each matching stra-
tum, there will be both exposed and unexposed subjects
(in cohort studies) or diseased and nondiseased subjects
(in case-control studies).’> More generally, popular strat-
egies for control of confounding such as regression ad-
justment do not induce exchangeable assignments;
rather, they must assume that the set of controlled pre-
dictors are sufficient in the sense just described, which is
often not true.

CALIBRATION

Key structures in subjective theory can be traced out in
parallel with structures in objective theory. For example,
in objective epidemiologic theory, “exchangeability” of
exposure groups is synonymous with “comparability” of
the groups, or absence of confounding.*’ I have focused
instead on subjective exchangeability because no phys-
ical probabilities can be identified or even shown to
exist in observational epidemiologic comparisons.*
Nonetheless, one should not lose sight of the parallel
because, if physical probabilities do exist in a given
situation, then (generalizing from the Principal Princi-
ple) we should want our subjective probability assign-
ments to be as closely calibrated to the physical proba-
bilities as possible.?

To clarify the origin of the notion of calibration,
consider meteorology, an applied physical science whose
difficulties with complex observational studies and pub-
lic esteem may rival those of epidemiology. I should be
quite satisfied if, in my town, it rained on 70% of those
days for which the forecast gave a 70% chance of rain,
and so on for other percentages. | know, however, that
such good calibration is well beyond current meteorol-
ogy, and that I should not confuse the forecast (a sub-
jective probability produced by the weather service)
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with any physical probability. Similarly, [ would be quite
satisfied if, in my county, there was a decline in AIDS
case reports in 70% of those subgroups for which our
projections gave a 70% chance of decline in the coming
year, and so on. Such excellent calibration is beyond
current epidemiology, and I know 1 should not confuse
our projection (a subjective probability) with any phys-
ical probability.

In the objective theory, the “70% chance of decline”
just described is referred to as an “estimate of the prob-
ability of decline,” and so presumes that the physical
probability exists. Whether or not the latter exists, sub-
jective probabilities can be constructed and updated
using the actual outcomes. What updating method will
ensure that our subjective probabilities will approach the
physical probabilities when the latter exist and data
accumulate indefinitely? As with probability estimates
from the objective theory, such convergence depends on
whether any assumptions we have used (for example,
logistic dependence of probabilities on factors) are at
least approximately correct. Thus, to repeat, a Bayesian
analysis does not free us from the need to check our
assumptions®?*¥%; as in Popperian philosophy, in the
Bayesian philosophy espoused here the ultimate test of
our hypotheses and assumptions is how well our predic-
tions are borne out by observations.

Discussion

Unlike forecasting, risk factor epidemiology provides few
opportunities to validate predictions in the manner de-
scribed above. That is, risk factor epidemiology suffers
from a lack of calibration opportunities, rather than a
lack of theoretical testability. No philosophy, whether
frequentist, Bayesian, or Popperian, can do more than
point out this weakness in our science. Whether this
weakness can be remedied by anything other than more
randomized trials (such as the recent trials of beta-
carotene) remains to be seen.

Although 1 have argued that subjective probability
logic has value as an approach to statistical inference,
like all approaches (including the Popperian approach)
it should be regarded as a partial and conditional ac-
count of scientific reasoning®*; it is not as comprehensive
as some authors’®’ seem to maintain. In particular, as
with all statistical procedures, conclusions derived using
Bayesian methods are conditional on any probability
models used in the course of analysis, and well as on
prior-probability assignments. Criticism of these models
and assignments plays an essential role in data analysis
that complements and cannot be replaced by Bayesian
methods.”* In Popperian terms, we may view a Bayesian
analysis as a method to incorporate data information
into a given model; it cannot substitute for or be re-
placed by the model-criticism step, in which the model
is exposed to possible criticism based on conflict with
observations.

It is a serious challenge for both objective and subjec-
tive theories to address how one should specify and
justify use of probability models when there are no
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known physical probabilities or symmetries on which to
base them.’® By “justify,” ] mean deduce the probability
assignments from a set of assumptions that are given
high prior probabilities by everyone in the scientific
community. In this sense, the standard likelihood func-
tions used to estimate causal effects from observational
epidemiologic studies appear difficult to justify in sub-
jective terms and impossible to justify in objective terms,
for their deduction assumes that the exposure was ran-
domized in a “natural experiment,” which would be a
fanciful assumption in (say) a study of alcohol use and
breast cancer. The Principal Principle does not help
here; it asks us to model our subjective probabilities on
the basis of physical probabilities that do not exist or at
best are unknown. Likewise, the Dutch Book argument
is of no help if we have no precise values to give to our
subjective probabilities, although in such a case an ar-
gument can be made for use of interval probability
assignments.’

It is sometimes suggested that conventional statistics
should be regarded as providing the minimal uncertainty
that one should assign to a parameter.’*® This suggestion
seems too easily ignored in typical epidemiologic discus-
sions, however, and it does not address the fact that,
without justifiable probabilities, probabilistic induction
and the whole body of inferential statistics (objective
and subjective) is without foundation. For one must ask:
Of what relevance is a statistic based on the assumption
that “the data are from a perfect randomized trial” when
randomization (let alone perfection) is a complete fan-
tasy! The answer is a subjective one, in that persons with
much faith in the validity of the study (typically, the
study investigators and persons who are pleased with the
results) will think those staristics are highly relevant,
whereas persons with little faith in the validity of the
study (typically, persons displeased with the results) will
think those statistics are deceptive.

Skepticism about claims for objectivity should be ap-
plied to common statistical methods, such as traditional
P-values, confidence intervals, and regression analyses,
as well as to more modern approaches based on boot-
strapping, Gibbs sampling, and other Monte-Carlo
methods. [ am aware of only two justifiable responses to
this skepticism. One response is to limit analyses of
observational data to pure data descriptors: graphs and
tables, perhaps some means and differences and ratios,
but no P-values or confidence intervals or standard er-
rors or regressions. As for summary measures, only stan-
dardization could be justified; maximum-likelihood and
Mantel-Haenszel estimates could not. Such a limited
analysis would probably never get published and would
be devoid of measures of uncertainty.

An alternative response is to expend the extra effort
to propose plausible (if tentative) subjective probability
assignments and use them in a Bayesian analysis; fre-
quentist methods would sometimes be justified as ap-
proximations to Bayesian methods. Such an analysis
would be “subjective” but not arbitrary, because it would
be constrained by past observations and by the norms of
the subjective theory. It would have several advantages
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over conventional “objective” analyses. First, it would
yield logically derived conditional certainty statements;
for example, it would allow derivation of statements of
the form “Given the assumptions of this analyses, we
would be 95% certain_that the parameter under study
lies between RR and RR.” In constructing such state-
ments, the Bayesian analysis can make use of valuable
information that is ignored by conventional analyses,
such as probable limits on the magnitude of typical
effects. 13243941

Another Bayesian advantage is a consequence of the
use of magnitude information and may be the most
relevant for a Popperian epidemiologist. If the magni-
tude of an effect estimate is symmetrically constrained
by a prior distribution or hierarchy, it will be less prob-
able that the estimate will appear substantively or “sta-
tistically” significant than in a conventional analysis. In
this sense, Bayesian analysis can provide a more strin-
gent test of the causal hypothesis that the effect is
non-negligible. (“Non-negligible” often means nonzero,
but it may also mean “above a certain action thresh-
old.”} From a conventional statistical perspective, this
means that the power (sensitivity) of the Bayesian anal-
ysis at a given alpha level (specificity) will be lower than
that of the conventional analysis. This power loss is
modest, however, compared with the dramatic reduction
in Type I (false-positive) error afforded by the use of the
prior information. In hypothesis-screening terms, this
means that the Bayesian analysis allows one to trade a
modest decrease in sensitivity for a very large increase in
specificity, so that the ROC curve for Bayesian hypoth-
esis screening lies above the curves for conventional
hypothesis-screening procedures.

The preceding advantage of Bayesian analysis has
been phrased in terms of hypothesis testing. Such terms,
although used by Popper, have come to be abhorred by
some epidemiologists because of the widespread abuse of
statistical hypothesis testing.!*!* The advantage may be
rephrased in estimation terms, however: Bayesian meth-
ods facilitate the use of prior information to construct
estimates of much greater accuracy (that is, with better
calibration) than conventional estimates. From my per-
spective, this is a decisive advantage, and one that has
been verified repeatedly in theory, simulation, and real
applications.:38-41

One remaining question is whether epidemiologists
can be trained to employ Bayesian methods in an intel-
ligent fashion. A cynic could point to evidence that the
task is not possible, especially in the aforementioned
abuse of statistical hypothesis testing. 1 would argue,
however, that potential for abuse of Bayesian methods is
insufficient grounds for denial of its benefits to compe-
tent users. Of course, widespread use of these methods
will be delayed by their conceptual unfamiliarity, by lack
of software, and by innate resistance to change. Fortu-
nately, there is a growing movement in the statistics
community to introduce Bayesian methods into basic
statistics education®; this movement, along with cover-
age of probability logic in epidemiologic training, will
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hasten the day when unfamiliarity is no longer an im-
portant obstacle.
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Appendix 1

The Necessity of the Probability Axioms to Prevent Sure
Loss

Suppose you are willing to bet on your probability assignments
in the following sense: You are willing to gamble up to s
monetary units in a wager against me, and, if you assign Pr(A)
to a statement A (such as 0.01 to “HIV will be eradicated by
2020”) then you would be willing to bet sPr(A) on A being
true or s{1 — Pr(A)) on A being false, at my choice. That is,
Pr(A)/(1 — Pr(A)) equals the betting odds for A that would
render you indifferent to betting for or against A. Then, if your
probability assignments do not obey the axioms of probability
theory, I can choose my bets so that you are sure to lose money:

Axiom 1

Suppose you violate this axiom by assigning Pr(A) < 0. Then
I will bet on A. If A turns out to be false, you “win” the
negative amount sPr(A); this means you owe me the positive
amount —sPr(A). If A turns out to be true, you owe me s(1 —
Pr(A)). Thus, only by assigning P(A) = 0 (Axiom 1) can you

avoid sure loss.

AXIOM 2

Suppose A is logically inevitable, but you violate this axiom by
assigning Pr(A) > 1. Then I will bet against A, and you “win”
the negative amount s{1 — Pr(A)); this means you owe me
s(Pr(A) — 1). If you assign Pr(A) < 1, then | will bet on A and
win s(1 = Pr(A)). Only by assigning Pr(A) = 1 {(Axiom 2) can
you avoid a sure loss.

AxIioM 3
Suppose vour assignments yield Pr(A or B} > Pr(A) + Pr(B)
for some mutually exclusive A and B. Then [ will place bets
against “A or B,” for A, and for B. If A turns out to be true, |
win
s(1 = Pr(A)) — sPr(B) — s(1 — Pr(A or B))
(Al)
= sPr(A or B) — s(Pr(A) + Pr(B)),

which is positive. Reversing A and B shows that I net the same
amount if B turns out to be true. If neither occurs, I also win
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sPr(A or B) — s(Pr(A) + Pr(B)). (They cannot both be true.)
Parallel algebra shows I can guarantee you suffer a net loss if
your assignments yield Pr(A or B) < Pr(A) + Pr(B) for some
mutually exclusive A and B by betting for “A or B,” against A,
and against B. Only by assigning Pr(A or B) = Pr(A) + Pr(B)
when A and B are mutually exclusive (Axiom 3) can you avoid
a sure loss.

Appendix 2

Corroboration in the Subjective Theory

The following argument and counterexample show that cor-
roboration implies but is not implied by probabilistic support.
Suppose that finding B false was possible and would have
refuted H; that is, Pr(not B) > 0 and Pr(H|not B) = 0. Then

Pr(H) = Pr(H|B)Pr(B) + Pr(H | not B)Pr(not B)
= Pr(H | B)Pr(B) < Pr(H|B)
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because Pr(B) = 1 — Pr(not B) < 1.
Now suppose that Pr(H and B) = Pr(not H and not B) =
0.3 and Pr(H and not B) = Pr(not H and B) = 0.2. Then

Pr(H|B) = 0.3/(0.3 + 0.2) = 0.6 > Pr(H)
= Pr(H and B) + Pr(H and not B) = 0.3 + 0.2 = 0.5,

so B supports H, but Pr(H|not B) = 0.2/(0.3 + 0.2) = 0.4, so
B does not corroborate H.

The following counterexamples show that proof and cor-
roboration do not imply one another. First, suppose that Pr(H)
= 0.6 and Pr(B) = Pr(H and B) = 0.2. Then Pr(H|B) =
0.2/0.2 = 1, so B proves H, but Pr(H|not B) = (0.6 — 0.2)/
(1 —0.2) = 0.5, so B does not corroborate H. Second, suppose
that Pr(B) = 0.4 and Pr(H) = Pr(H and B) = 0.2. Then
Pr(H | not B) = (0.2 — 0.2)/(1 — 0.4) = 0, so B corroborates
H, but Pr(H|B) = 0.2/0.4 = 0.5, so B does not prove H.



