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The method of inverse probability weighting (henceforth, weighting) can be used to adjust for measured con-
founding and selection bias under the four assumptions of consistency, exchangeability, positivity, and no mis-
specification of the model used to estimate weights. In recent years, several published estimates of the effect of
time-varying exposures have been based on weighted estimation of the parameters of marginal structural models
because, unlike standard statistical methods, weighting can appropriately adjust for measured time-varying con-
founders affected by prior exposure. As an example, the authors describe the last three assumptions using the
change in viral load due to initiation of antiretroviral therapy among 918 human immunodeficiency virus-infected US
men and women followed for a median of 5.8 years between 1996 and 2005. The authors describe possible trade-
offs that an epidemiologist may encounter when attempting to make inferences. For instance, a tradeoff between
bias and precision is illustrated as a function of the extent to which confounding is controlled. Weight truncation is
presented as an informal and easily implemented method to deal with these tradeoffs. Inverse probability weighting
provides a powerful methodological tool that may uncover causal effects of exposures that are otherwise obscured.
However, as with all methods, diagnostics and sensitivity analyses are essential for proper use.

bias (epidemiology); causality; confounding factors (epidemiology); probability weighting; regression model

Abbreviations: AIDS, acquired immunodeficiency syndrome; HAART, highly active antiretroviral therapy; HIV, human
immunodeficiency virus; HIV-1, human immunodeficiency virus type 1.

Inverse probability weighting (henceforth, weighting) can
be used to estimate exposure effects. Unlike standard statis-
tical methods, weighting can appropriately adjust for con-
founding and selection bias due to measured time-varying
covariates affected by prior exposure (1).

Under the four assumptions of consistency, exchangeabil-
ity, positivity, and no misspecification of the model used to
estimate the weights, weighting creates a pseudo-population
in which the exposure is independent of the measured con-
founders (2). The pseudo-population is the result of assigning
to each participant a weight that is, informally, proportional
to the participant’s probability of receiving her own expo-
sure history. In such a pseudo-population, one can regress

the outcome on the exposure using a conventional regres-
sion model that does not include the measured confounders
as covariates. Fitting a model in the pseudo-population is
equivalent to fitting a weighted model in the study popula-
tion. The parameters of such weighted regression models,
which equal the parameters of marginal structural models
(3), can be used to estimate the average causal effect of
exposure in the original study population.

In recent years, several published estimates of the effect
of time-varying exposures have been based on weighted
estimation of the parameters of marginal structural models
(4-24). Most of these articles discuss the plausibility of the
exchangeability assumption, often referred to as the

Correspondence to Dr. Stephen R. Cole, Department of Epidemiology, School of Public Health, University of North Carolina at Chapel Hill,
McGavran-Greenberg Hall, Campus Box 7435, Chapel Hill, NC 27599-7435 (e-mail: cole @unc.edu) (present address).

Am J Epidemiol 2008;168:656—664



Inverse Probability Weights 657

assumption of no unmeasured confounding, and emphasize
correctly that this assumption is not empirically verifiable.
These articles also implicitly assume that consistency holds,
which is a reasonable assumption when estimating the effect
of medical treatments (refer to appendix 2 for a formal def-
inition of consistency). However, these articles do not usu-
ally include an explicit discussion of the role of the other
three assumptions stated above. Here, we describe the role
of three of the four assumptions in weighted estimation and
the interpretation of results. This paper is structured as fol-
lows. First, we describe a motivating example from our
ongoing work in human immunodeficiency virus (HIV) ep-
idemiology. Second, in the context of our motivating exam-
ple, we describe the assumptions of exchangeability,
positivity, and no model misspecification, as well as the
tradeoffs that an epidemiologist may encounter when at-
tempting to make inferences under these assumptions.
Third, we describe an informal method to deal with these
tradeoffs. We conclude with a brief discussion and some
recommendations for constructing inverse probability
weights (henceforth, weights).

EXAMPLE: ANTIRETROVIRAL THERAPY AND VIRAL
LOAD IN HIV-INFECTED INDIVIDUALS

To provide motivation for our discussion, we use the
analysis reported in a recent paper (19) that estimated the
effect of initiation of highly active antiretroviral therapies
(HAART) on the change in human immunodeficiency virus
type 1 (HIV-1) RNA viral load in HIV-infected individuals.
We suggest reading reference 19 in concert with the present
paper. In brief, 918 HIV-infected men and women not using
HAART at study entry were seen semiannually in the
Multicenter AIDS [acquired immunodeficiency syndrome]
Cohort Study or Women'’s Interagency HIV Study for a me-
dian of 5.8 years between 1996 and 2005. We estimated the
effect of time-varying HAART initiation on change in log;
viral load.

For each subject i and visit j, we estimated a weight SW;;
that was, informally, proportional to the inverse (or recipro-
cal) of the probability of having her own observed exposure
and censoring history through that visit. For a formal defi-
nition of the weights, refer to appendix 1. We then fit
a weighted repeated measures regression model in which
an individual was assigned her estimated weight SW;; at
each visit. The primary effect estimate was an immediate
and sustained 1.91 log; decrease in viral load after HAART
initiation. Next, we describe the assumptions necessary for
valid inferences and their practical implications in the con-
text of our example.

EXCHANGEABILITY

Exchangeability implies the well-known assumption of
no unmeasured confounding. For the assumption of no un-
measured confounding to hold, we have to measure enough
joint predictors of exposure and outcome such that, within
the levels of these predictors, associations between exposure
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and outcome that are due to their common causes will dis-
appear. For a formal definition, refer to appendix 2.

Exchangeability assumptions are not testable in observed
data, but one may explore the sensitivity of inferences from
weighted regression to this assumption by using sensitivity
analysis as described by Robins (25) and implemented by
various authors (10, 14, 26). We do not reiterate the approach
to sensitivity analysis here but, rather, assume that the most
important confounders were identified using expert knowl-
edge (27, 28) and were then appropriately measured and
included in the analysis. Specifically, we assumed that con-
ditioning on several baseline covariates and the most recent
values of CD4 cell count and viral load is sufficient to
achieve exchangeability between those who did and did
not initiate therapy at any time during the follow-up. Later,
in table 3, we assess the impact of adding further potential
confounders. As a consequence of our assumption that ther-
apy is continuously used after initiation, we do not need to
assume that those who did and did not discontinue were
exchangeable, and hence our estimates do not require the
assumption of exchangeability after therapy initiation. The
price we pay for this intent-to-treat assumption is, of course,
some bias toward the null that increases with the number of
participants that discontinue therapy during follow-up.

As a practical rule to help ensure approximate exchange-
ability, it may appear obvious that investigators need first to
identify and measure as many potential confounders as pos-
sible. Then, investigators would include those potential con-
founders in the model used to estimate the denominator of
the weights. However, this strategy may not always decrease
net bias in finite samples for two reasons. First, the addition
of a nonconfounding variable may introduce selection bias
due to collider stratification (29, 30). Second, adding too
many potential confounders in relation to the number of
observations may introduce finite-sample bias, which is re-
lated to the bias due to nonpositivity discussed below. Fur-
ther, adding nonconfounding variables to the model for the
weights may decrease the statistical efficiency of the effect
estimate (i.e., yield wider confidence intervals) (31). For
these reasons and as illustrated below, in practice one may
not always want to include as many potential confounders as
possible.

POSITIVITY

For any method that estimates the average causal effect in
the study population, one must be able to estimate the aver-
age causal effect in each subset of the population defined by
the confounders. For example, to estimate the effect of
HAART in the presence of confounding by CD4 cell count,
we need to be able to estimate the effect of HAART in every
category of CD4 cell count. An effect cannot be estimated in
a subset of the study population if everyone is exposed (or
unexposed) in that subset. Positivity is the condition that
there are both exposed and unexposed individuals at every
level of the confounders. For a formal definition, refer to
appendix 2. Positivity is guaranteed (unconditionally) in ex-
periments because, by design, there will be individuals as-
signed to each level of the studied treatment. The positivity
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assumption is also called the experimental treatment as-
sumption (32). Because the weights SW;; can always be
estimated parametrically from the data, even in the presence
of violations of the positivity assumption, lack of positivity
(like lack of consistency) may go undetected unless explic-
itly investigated.

If somebody cannot possibly be exposed at one or more
levels of the confounders, then positivity is violated because
there is a structural zero probability of receiving the expo-
sure. To fix this idea, we provide two examples. First, in an
occupational epidemiology study to estimate the health ef-
fects of a certain chemical, being at work is a potential
confounder often used as a proxy for health status. If one
cannot be exposed to the chemical outside the workplace,
then there is a structural zero probability of exposure to the
chemical among those no longer at work. Second, in a phar-
macoepidemiology study to estimate the effects of a particular
drug, an absolute contraindication for treatment (e.g., liver
disease) may be a surrogate for bad prognosis. If one cannot
possibly be treated in the presence of the contraindication,
then there is a structural zero probability of receiving the
treatment among those with the contraindication. An obvi-
ous solution is restricting the inference to the subset with
a positive probability of exposure. However, if the structural
zero occurs within levels of a time-varying confounder (e.g.,
liver disease), then restriction or censoring may lead to bias,
whether one uses weighting or other methods (30).

Even in the absence of structural zeros, random zeros
(also called practical violations of the experimental treat-
ment assumption (33)) may occur by chance because of
small sample sizes or high dimensional (i.e., highly strati-
fied or continuous) data. Even a relatively large study may
have zero proportions for particular exposure and covariate
histories as the number of covariates increases. In fact, when
modeling continuously distributed covariates, random zeros
are essentially guaranteed because of the infinite number of
possible values. In such cases, the use of parametric models
smoothes over the random zeros by borrowing information
from individuals with histories similar to those that, by
chance, resulted in random zeros. For example, in table 1
we present the proportions of HAART initiation (i.e., expo-
sure) at 25 levels of joint time-varying CD4 cell count and
viral load. At two of 25 levels, we see nonpositivity or a zero
proportion exposed. These observed zero proportions may
be structural or random. In table 1, both zero proportions
occur in person-time contributions where immunity is not
depleted (i.e., CD4 count, >749 cells/mm? ) but virus is de-
tectable. On the basis of prior substantive knowledge and
surrounding nonzero proportions, we concluded that these
two nonpositive proportions appear to be random zeros,
rather than structural zeros, and thus proceeded to model
the probability of exposure to construct weights.

There is a tradeoff between reducing confounding bias
and increasing bias and variance due to nonpositivity. Data
become sparse, and the likelihood of random zeros (and
hence bias due to nonpositivity) increases as one includes
more confounders. For example, in table 2, we progressively
expand the number of categories used to define CD4 count
and viral load in the construction of weights from one to
nine categories. Table 2 also presents the effect estimate

TABLE 1. Proportions of 286 HAART* initiators observed

in 4,778 semiannual study visits by categories of prior
time-varying CD4 and HIV-1* RNA viral load, Multicenter AIDS*
Cohort Study and Women'’s Interagency HIV* Study, 1996-2005

CD4 count, Viral load, No. No. of

cells/mm?® copies/ml exposed  person-visits Proportion
>749 <401 2 308 <0.01
401-<4,000 3 253 0.01
4,000-10,000 0 278 0
10,001-35,000 4 117 0.03
>35,000 0 38 0
501-749 <401 3 199 0.02
401-<4,000 3 354 <0.01
4,000-10,000 5 374 0.01
10,001-35,000 15 259 0.06
>35,000 14 162 0.09
351-500 <401 2 76 0.03
401-<4,000 12 268 0.04
4,000-10,000 5 263 0.02
10,001-35,000 25 280 0.09
>35,000 17 247 0.07
200-350 <401 1 36 0.03
401-<4,000 5 118 0.04
4,000-10,000 6 162 0.04
10,001-35,000 17 242 0.07
>35,000 55 273 0.20
<200 <401 3 12 0.25
401-<4,000 3 25 0.12
4,000-10,000 4 53 0.08
10,001-35,000 13 101 0.13
>35,000 69 280 0.25
Total 286 4,778

* HAART, highly active antiretroviral therapy; HIV-1, human
immunodeficiency virus type 1; AIDS, acquired immunodeficiency
syndrome; HIV, human immunodeficiency virus.

(i.e., the difference in log;q viral load) and its standard error
obtained by bootstrap. Estimated weights with the mean far
from one or very extreme values are indicative of nonposi-
tivity or misspecification of the weight model, and thus table 2
also presents the mean, standard deviation, minimum, and
maximum estimated weights. As the number of categories in-
creases from one to five, we observe three changes. First, the
effect estimate increases in absolute value, which (in the
present substantive setting) suggests a better control of con-
founding. Second, the precision of the effect estimate de-
creases. Third, the standard deviation and range of the
weights increase, which is the cause of the decreasing pre-
cision of the effect estimate. For seven categories of CD4
cell count and viral load, the effect estimate moves toward
the null and its standard error triples. For nine categories of
CD4 cell count and viral load, the weights become so alarm-
ingly variable (with a mean no longer equal to one) that the
effect estimate is no longer computable.
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TABLE 2. Effect of HAART* versus no HAART on change in
HIV-1* RNA viral load under a series of models using
increasingly fine categorization of time-varying CD4 count and
viral load in construction of inverse probability weights,
Multicenter AIDS* Cohort Study and Women’s Interagency HIV*
Study, 1996-20051

Difference in

Estimated weights viral load,

No. of logo copies/ml
categories# —
Mean (SD¥*) m:;mquun:r: Estimate SE*§
1 1.00 (0) 1.00/1.00 —-1.59 0.089
3 1.01 (0.96) 0.15/33.5 —-1.73 0.103
5 1.00 (1.42) 0.06/59.1 -1.79 0.125
7 1.03 (1.61) 0.06/74.2 —-1.74 0.392
9 536.7 (8,037.3) 0.05/1.6 X —q —
100,000

* HAART, highly active antiretroviral therapy; HIV-1, human
immunodeficiency virus type 1; AIDS, acquired immunodeficiency
syndrome; HIV, human immunodeficiency virus; SD, standard de-
viation; SE, standard error.

1 All models in this table stabilized weights by using only a three-
knot spline for time.

# The nine categories of CD4 count and viral load were as follows:
<25, 26-50, 51-100, 101-150, 151-<200, 200-350, 351-500, 501—
749, >749 cells/mm® and <100, 101-1,000, 1,001-10,000, 10,001—
50,000, 50,001-100,000, 100,001-200,000, 200,001-300,000,
300,001-500,000, >500,000 copies/ml, respectively; coarsened cate-
gories were obtained by collapsing adjacent outer categories.

§ The standard deviation of 500 nonparametric bootstrap sample
estimates; 500, 500, 500, and 496 converged.

€ —, not computable.

Contrary to the naive belief that more finely defined con-
founders will always lead to better confounding control,
table 2 shows that bias and variance of the effect estimate
may increase with the number of categories. Similarly, one
may wish to omit control for weak confounders that cause
severe nonpositivity bias because of a strong association
with exposure. In addition, although not illustrated in table
2, the magnitude of nonpositivity bias typically increases
with the number of time points and decreases with the use
of appropriately stabilized weights.

Weighted estimates are more sensitive to random zeros
than is standard regression or stratification estimates, which
implicitly extrapolate to levels of the covariates with a lack
of positivity. Users of weighted approaches need tools to
handle this bias-variance tradeoff. Wang et al. (33) have
proposed a computationally demanding diagnostic tool to
quantify the finite-sample bias due to random zeros in
weighted estimates. After reviewing the assumption of no
model misspecification in the next section, we propose an
informal method to evaluate this bias-variance tradeoff.
Refer to references 32-34 for more formal methods.

CORRECT MODEL SPECIFICATION

Weighted estimation of the parameters of marginal struc-
tural models requires fitting several models: 1) the structural
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(i.e., weighted) model, 2) the exposure model, and 3) the
censoring model. For simplicity and because this paper fo-
cuses on constructing weights to estimate the parameters of
any marginal structural model through weighted regression,
we will assume throughout that the structural model is cor-
rectly specified. In practice, investigators will want to ex-
plore the sensitivity of their estimates to different structural
model specifications (e.g., linear vs. threshold dose-response,
long- vs. short-term effects, and so on).

To construct appropriate weights, investigators need to
correctly specify the models for exposure and censoring.
Here, we will discuss only modeling of the exposure distri-
bution, but our comments apply equally to modeling the
censoring distribution. As stated above, a necessary condi-
tion for correct model specification is that the stabilized
weights have a mean of one (2). In table 3, we provide
a step-by-step example of building weights for the marginal
structural model detailed previously (19) and described
above. Although the step-by-step process is a simplified
representation of the actual process, we hope that sharing
the general approach may guide future implementations of
marginal structural models.

In specification 1, the model to estimate the denominator
of the weights was a pooled logistic model for the probabil-
ity of exposure initiation at each visit. Specifically, each
person-visit was treated as an observation, and the model
was fit on those person-visits for which no exposure had
occurred through the prior visit. The covariates were linear
terms for follow-up time, baseline CD4 cell count and viral
load, and time-varying CD4 cell count and viral load mea-
sured at the prior visit. This model, which is a parametric
discrete-time approximation of the Cox proportional haz-
ards model for exposure initiation (35, 36), assumes that
the relation between the baseline covariates (and follow-
up time) and the probability of exposure initiation is linear
on the logit scale. The model to estimate the numerator of
the weights was also a pooled logistic model for the proba-
bility of exposure initiation, except that time-varying CD4
cell count and viral load were not included as covariates.
The mean of the estimated weights was 1.07 (standard de-
viation, 1.47), the 1/minimum and maximum estimated
weights were 33.3 and 26.4, and the effect estimate was
—1.94 (standard error, 0.17).

In specification 2, we replace the linear terms for baseline
and time-varying CD4 and viral load with categories (i.e.,
CD4: <200, 200-500, >500 cells/mmS; and viral load de-
tectable (at 400 copies/ml) or not) to illustrate the impact of
potential residual confounding within categories of the con-
founders. The estimated weights appear better behaved than
in specification 1 (e.g., the mean moves from 1.07 to 1.05,
I/minimum and maximum notably smaller), and the stan-
dard error for the difference in log; viral load is a striking
39 percent (1 — 0.104/0.170 = 0.388) smaller, but the effect
estimate of —1.66 moved closer to the unadjusted value
of —1.56 (i.e., one category, table 2).

In specification 3, the numerator and denominator are as
in specification 1, but we add three-knot restricted cubic
splines to all linear terms. Other smoothing techniques
could be used (37). This flexible parameterization of the
time-varying confounders is generally preferred, because
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TABLE 3. Effect of HAART* versus no HAART on change in HIV-1* RNA viral load under a series of
models for the construction of inverse probability weights, Multicenter AIDS* Cohort Study and Women’s

Interagency HIV* Study, 1996—2005

Difference in

Estimated weights viral load,

Specification Description log1o copies/ml
Minimum/ .
Mean (SD*) maximum Estimate SE*, 1
1 Numerator includes linear terms for baseline 1.07 (1.47)  0.03/26.4 —1.94 0.170
CD4, RNA, and time. Denominator includes
linear terms for baseline CD4, RNA, time,
CD4_4, and RNA_;.
2 Numerator and denominator are as in step 1 1.05 (0.65) 0.11/16.6 —1.66 0.104
but replace linear terms for baseline and
time-varying CD4 and RNA with step
functions (i.e., categoriest).
3 Numerator and denominator are as in step 1, 1.05 (1.17)  0.038/37.0 —1.91 0.139
with three-knot splines to all linear terms.
4 Numerator and denominator are as in step 3, 1.04 (1.15)  0.03/46.8 -1.91 0.132
plus a product between CD4_,; and time
in denominator.
5 Numerator and denominator are as in step 4, 1.04 (1.67) 0.03/83.5 —-1.95 0.133
plus three-knot splines for CD4_, and
RNA_, in denominator.
6 Numerator and denominator are as in step 4, 1.05 (1.37)  0.03/68.4 —1.91 0.130

plus indicators for AIDS_; and presence
of HIV symptoms_ in denominator.

* HAART, highly active antiretroviral therapy; HIV-1, human immunodeficiency virus type 1; AIDS, acquired
immunodeficiency syndrome; HIV, human immunodeficiency virus; SD, standard deviation; SE, standard error.

T The standard deviation of 500 nonparametric bootstrap sample estimates; 500 always converged.

¥ The CD4 count categories were as follows: <200, 200-500, >500 cells/mm?; and viral load was detectable at

400 copies/ml or not.

it liberates one from much of the residual confounding or
finite-sample bias inherent in categorical variables (e.g.,
specification 2) and reduces the potential bias due to model
misspecification from strong linearity assumptions (e.g.,
specification 1). Compared with specification 1, the estimated
weights and effect estimate are similar, but the standard error
is reduced by 18 percent (1 — 0.139/0.170 = 0.182).

In specification 4, we added a product term between time-
varying CD4 count and follow-up time suggested by clinical
colleagues, which had p = 0.03. Compared with specifica-
tion 3, there is little change in the estimated weights (although
the maximum weight increases), and the effect estimate re-
mains unaltered, but its standard error is reduced by 5 percent.
This is essentially the model specification used previously
(19); however, the (conservative) robust standard error re-
ported (19) was 0.135, while the bootstrap standard error
reported here is 0.132.

In specification 5, we explored more fully detailed cova-
riate histories, using time-varying CD4 count and viral load
measured two visits prior to the visit at-risk for HAART
initiation in addition to values measured one visit prior.
Beyond an increase in the maximum weight, no notable
changes are apparent.

In specification 6, we explored the addition of two more
possible time-varying confounders, namely, clinical AIDS
status and HIV-related symptoms (i.e., reports of persistent

fever, diarrhea, night sweats, or weight loss) at the visit prior
to the visit at-risk for HAART initiation. Again, no notable
changes are apparent.

WEIGHT TRUNCATION AS A MEANS TO TRADEOFF
BIAS AND VARIANCE

The process discussed above and presented in table 3
illustrates how the choice of the model used to construct
weights may impact the results of a marginal structural
model. Our decision to settle on specification 4 of table 3
was an informal bias-variance tradeoff between the inclu-
sion of a sufficient number of flexibly modeled confounders
in the weight model and the construction of well-behaved
weights (mean = 1, small range) that led to a small variance
of the effect estimate. Thus, compared with the model in
specification 4, models that included only linear terms for
the time-varying confounders (i.e., specification 1), omitted
product terms (i.e., specification 3), or included additional
potential confounders (i.e., specifications 5 and 6) typically
resulted in similar effect estimates with a slightly greater
variance or greater model complexity. On the other hand,
transforming the continuous confounders into categorical
variables (i.e., specification 2) resulted in a smaller variance
but probably also in insufficient confounding adjustment, as
the effect estimate moved considerably toward the unadjusted

Am J Epidemiol 2008;168:656—664
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TABLE 4. Effect of HAART* versus no HAART on change in
HIV-1* RNA viral load under progressive truncation of inverse
probability weights, Multicenter AIDS* Cohort Study and
Women'’s Interagency HIV* Study, 1996-2005

Difference in
) Estimated weights viral load,

Truncation logo copies/ml
percentiles —

Mean (SD%*) m;’;mquun;: Estimate SE* 1
0, 100+ 1.04 (1.15) 0.03/46.8 —-1.91 0.132
1, 99 1.00 (0.58) 0.20/4.49 —-1.80 0.122
5,95 0.95 (0.36) 0.36/1.93 —-1.73 0.106
10, 90 0.92 (0.27) 0.49/1.42 —1.69 0.101
25,75 0.91 (0.12) 0.75/1.03 —1.63 0.091
50, 50% 0.95 (0.00) 0.95/0.95 —-1.59 0.089

* HAART, highly active antiretroviral therapy; HIV-1, human
immunodeficiency virus type 1; AIDS, acquired immunodeficiency
syndrome; HIV, human immunodeficiency virus; SD, standard de-
viation; SE, standard error.

t The standard deviation of 500 nonparametric bootstrap sample
estimates; 500 always converged.

$ No truncation of weights corresponds to a standard marginal
structural model, while setting all weights to the constant 50th
percentile corresponds to the baseline adjusted model.

result. Note that the best behaved weights (by the measures
of mean and small range) would simply be a constant one.
However, such weights would completely fail to control for
time-varying confounding.

One simple way to explore this bias-variance tradeoff is to
progressively truncate (38) the weights as shown in table 4.
Specifically, the weights are progressively truncated by re-
setting the value of weights greater (lower) than percentile
p (100 — p) to the value of percentiles p (100 — p). The first
row in table 4 corresponds to the standard marginal struc-
tural model (i.e., specification 4 in table 3), while the last row
in table 4 corresponds to a baseline-adjusted model (i.e., one
category, table 2, or reference 19, p. 222). Assuming that the
marginal structural model estimate is correct, one can see
the growing bias as the weights are progressively truncated.
Simultaneously, one can see the increasing precision as the
weights are progressively truncated. In this case and under
the assumption that the marginal structural model estimate
is unbiased, the small increase in precision due to weight
truncation is outweighed by the relatively large bias in-
duced. However, here, one could reasonably argue in favor
of reporting the result with the weights truncated at the first
and 99th percentiles, on the basis of the centering of the
weights at one and the order of magnitude reduction in the
1/minimum and maximum weights.

The requirement of a mean of one applies to the estimated
weights at each time point, but, as a simplification, we
pooled the estimated weights from all time points in the
study. It is therefore logically possible that the chosen
weight model results in a mean estimated weight closer to
one than an alternative weight model but that the chosen
weight model is badly misspecified for some time points,
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whereas the alternative weight model is slightly misspeci-
fied at all time points. Depending on the aims of analysis, we
may prefer the alternative weight model over the chosen.

CONCLUSION

The construction of inverse probability weights for mar-
ginal structural models (4-20, 22), or other uses (30, 39),
requires a thoughtful process including determination of
a proper set of covariates upon which one can tolerate the
assumptions of no unmeasured confounding and no infor-
mative censoring, exploration of positivity, and determina-
tion of a model specification that optimizes bias reduction
and precision. Nonweighting methods are also subject to
these same assumptions. Indeed, a process similar to that
laid out here should be undertaken in any observational data
analysis. Here, we detailed some approaches to the con-
struction of such weights using an example from a recently
published paper.

Future research is needed to formally compare competing
methods to balance bias and variance when selecting from
potential confounders and functional forms. In the mean-
time, we recommend the following: 1) Check positivity
for important confounders as illustrated in tables 1 and 2.
2) Explore exchangeability by using a variety of potential
confounders and functional forms as illustrated in table 3,
coupled with sensitivity analysis (14). 3) Check weight
model misspecifications by exploring the distribution of
weights. The tradeoffs implied by the need to simulta-
neously guarantee exchangeability, positivity, and no model
misspecifications can be explored by evaluating the sensi-
tivity of inferences to truncating extreme weights as illus-
trated in table 4. In manuscripts, we encourage both
acknowledging the sensitivity of the effect estimates to the
weight model specification and reporting an effect estimate
that is robust to different weight model specifications. Often,
this will mean selecting as the main finding an effect esti-
mate that is less extreme than that produced by certain
weight model specifications. Inverse probability weighting
provides a powerful methodological tool that may uncover
causal effects of exposures that are otherwise obscured, but
powerful tools can be dangerous if not handled with care.
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APPENDIX 1
Inverse Probability Weights

For each subject 7, the outcome Y;; was the log;o number of
copies of HIV-1 RNA measured in blood at each semiannual
study visit j, and the exposure X;; = 1 indicates initiation of
HAART before visit j, and zero otherwise. We assume that
exposure is continuously used after initiation and write X;;
to denote exposure history up to visit j, that is,
Xij = {Xi0,Xi1,-..,X;}. In our example with 17 follow-up
visits beyond baseline, there are 18 possible exposure his-
tories, namely, never initiating HAART, which occurred for
632 (69 percent) of 918 participants, or initiating HAART at
any of the 17 follow-up visits. The 286 (31 percent) of 918
participants who initiated HAART did so at visits 1 through
17 in the following numbers: 56, 54, 30, 18, 17, 12, 12, 17,
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15, 4,5,8, 2,8,7, 12, and 9. Here, the structural model is
a mapping between each of these 18 static exposure regimes
and the mean log viral load. The covariate vector L;; avail-
able at each visit j included the time-varying covarlates CD4
cell count and HIV-1 RNA viral load, as well as the time-
fixed (i.e., baseline) covariates sex, race/ethnicity, and age.
As with exposure histories, we denote covariate histories
by L;. Finally, C; = 1 if participant i is censored by visit
J, and zero otherwise. Details about the structural (i.e.,
weighted) model were published previously (19).

The stabilized inverse probability weights SW; for par-
ticipant i at visit j are typically the product of inverse
probab1hty -of-exposure Welghts SW and inverse probablhty-
of- censorlng weights SW{; that s, SWZ, =SW; X SW,;. The
weight SW adjusts for measured confoundmg by the
variables in L,], and the welght SW adjusts for measured
selection bias by the variables in L,j Formally, the compo-
nent weights are defined as

SW H thk|X1k 17 thCIk ]
k= Of th‘th 1y tk 17C1k 0}

and

j+1 Pr[C,-k = O|Cik—l = 67Xik? Vi()]
k=1 Pr[Cy = 0|Cyy = 0, Xy, Ly’

c
SW; =

where f[-|-] is the conditional density function evaluated at
the observed covariate values for a given participant, 0 is
a vector of zeros, and V), is a vector including a subset of the
time-fixed baseline variables that is described in more detail
below. Note that we ensure the correct temporal order be-
tween possible confounders and exposure by using covariate
information through visit j — 1 L;_;, rather than through
visit j, to predict exposure reported at visit j, which repre-
sents HAART initiation in the interval between visits j — 1
and j. Ensuring the proper temporal sequence between con-
founders and exposure is paramount to the estimation of
causal effects, although sometimes published accounts omit
any references to this issue.

Bias adjustment is achieved by the denominator of the
weights. The numerator of the weights, which does not de-
pend on the time-varying covariates L;, is added for stabi-
lization. In many published applications of marginal
structural models (9, 14, 19), the conditioning event in the
numerator of the weights includes a subset of baseline var-
iables Vi, to help stabilize the weights and, thus, obtain
narrower confidence intervals around the effect estimate.
Informally, to achieve stabilization, one wishes to minimize
the difference between the numerator and denominator of
the weights such that the remaining difference reflects only
the confounding due to the time-varying covariates Lj,
which cannot be appropriately adjusted for by standard re-
gression or stratification. Colloquially, one wishes the nu-
merator of the weight to chase the denominator but stop
short of following the denominator when it comes to the
set of time-varying confounders one wishes to adjust for
by weighting.

However, this added stabilization comes at a price: The
V,o-stabilized weights create a pseudo-population in which,
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at each time, exposure is randomized only within the levels
of the covariates in V5. In other words, in the pseudo-
population, there may still be confounding by V;,. Thus,
the weighted regression model (equivalently, the marginal
structural model) must include the covariates V;y to adjust
for this possible confounding. As a result, the estimated
causal effect will not be unconditional (marginal) but con-
ditional on the covariates V. For example, our estimate of
a 1.91-log;( decrease in viral load assumes that the effect is
the same within levels of baseline variables V;. We could
have tested this assumption (of a constant effect across lev-
els of baseline variables V,y) by adding product terms to our
weighted regression model. Indeed, in several analyses, we
have explored possible effect modification by baseline var-
iables (9, 14, 19).

Unstabilized weights, in which the numerator f[Xj X1,
Vi, Cik—1 = 0] is replaced by f[Xu|Xik—1,Ci—1 = 0], can
also be used to adjust for bias, but they usually lead to more
extreme weights that result in wider confidence intervals
around effect estimates. Hence, stabilized weights are gen-
erally preferred, even if they require adding the baseline
variables in Vj, to the weighted model. When one is inter-
ested in evaluating potential modification of the exposure
effect by the baseline variables, the weighted model must
include main effects and product terms for the components
of V,, and thus stabilized weights can be used to achieve
a greater efficiency at no cost.

APPENDIX 2
Formal Definitions of Identifiability Assumptions

The following three assumptions are needed to nonparametri-
cally identify causal effects. Some methods may not require
one or more of these assumptions (e.g., instrumental varia-
bles, G-estimation of structural nested models) but, to consis-
tently estimate causal effects, these alternative methods must
trade these assumptions for other parametric assumptions.
Consistency means that a subject’s counterfactual out-
come under her observed exposure history is precisely her
observed outcome. To define consistency, let us first define

an individual’s potential, or counterfactual, outcome Y;;(¥)
under exposure history X as the outcome that would have
been observed if the individual had received exposure his-
tory X. Then, consistency is defined as Y;;(X) = Y;; if X;; = X.
Our use of the term consistency differs from the statistical
property of “consistency,” which means that the bias of an
estimator approaches zero as information (e.g., sample size)
increases. Refer to references 40—42 for a more detailed
discussion of consistency for common exposures in epide-
miologic research.

 Exchangeability states that, given measured confounders
L;;_, the potential outcomes Y;;(X) are independent of ob-
served exposure X;; or, in the case of a categorical exposure,
PI'[XU = X‘L,‘jfl,X,'j,I] = Pr[XU = X|LU71,X,'j,1, YU(X):I . In
studies with dropout, a similar exchangeability assumption
is used for censoring.

Positivity states that there is a nonzero (i.e., positive) prob-
ability of receiving every level of exposure X;; for every
combination of values of exposure and covariate histories
Xji—1 and L;_, that occur among individuals in the population.
Positivity requires that, if £ (X;_,Lj—1, Cj—1 = 0) # 0, then
PI'(XU = X|Xij_1 7Lij—la Cij—l = 0) > Oforallx € XU When
the analysis uses Vjy-stabilized weights, as in our case, the
positivity condition is slightly weaker because positivity then
assumes that, for each value of the baseline covariates V;, there
is a nonzero probability of every level of exposure X;; for every
combination of values of exposure and covariate histories X;;_
and L;;_; that occur among individuals with that value of V.
Formally, within levels of Vj, positivity requires

Pr(le = XU|X,']',1 y Vi(), Cijfl = 7_)
Pr(X; = xy[Xj-1, Ly, -1 = 0)

<

for all x € X;;, which implies that the assumption holds
whenever Pr(X; = x;|X;1, Vio, Cji—1 = 0) equals zero, re-
gardless of whether Pr(Xij = x[X;—1,Lij—1,Cijo1 = 0) > 0.

In fact, our definition of the inverse probability weights in
appendix 1 is incomplete: The inverse probability weights
are equal to SW; only under positivity. If the positivity
assumption does not hold, then the weights are undefined,
and the weights SW;; may result in biased estimates of the
causal effect (for details, refer to the Appendix of the paper
by Hernan and Robins (2)).
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